Intel Pentium FDIV Bug

Try 4195835 – 4195835 / 3145727 * 3145727.

In 94’ Pentium, it doesn’t return 0, but 256.

Intel uses the SRT algorithm for floating point division. Five entries in the lookup table are missing.

Cost: $400 - $500 million

Xudong Zhao’s Thesis on Word Level Model Checking
P53-Mdm2 and DNA Repair Circuit
“The p53 pathway has been shown to mediate cellular stress responses; p53 can initiate DNA repair, cell-cycle arrest, senescence and, importantly, apoptosis. These responses have been implicated in an individual's ability to suppress tumor formation and to respond to many types of cancer therapy.”

The protein p53 has been described as the **guardian of the genome** referring to its role in preventing genome mutation.

In 1993, p53 was voted **molecule of the year** by Science Magazine.
The State Explosion Problem

My 28 Year Quest:

- Symmetry Reduction
- Parametric Model Checking
- Partial Order Reduction
- Symbolic Model Checking
- Induction in Model Checking
- SAT based Bounded Model Checking
- Predicate Abstraction
- Counterexample Guided Abstraction Refinement
- Compositional Reasoning
 …
The State Explosion Problem

My 28 Year Quest:

- Symmetry Reduction
- Parametric Model Checking
- Partial Order Reduction
- Symbolic Model Checking
- Induction in Model Checking
- SAT based Bounded Model Checking
- Predicate Abstraction
- Counterexample Guided Abstraction Refinement
- Compositional Reasoning

... Statistical Model Checking!
Wait a minute!

Isn’t *Statistical Model Checking* an oxymoron?
Wait a minute!

Isn’t *Statistical Model Checking* an oxymoron?

I thought so for the first 27 years of my quest.
Wait a minute!

Isn’t *Statistical Model Checking* an oxymoron?

I thought so for the first 27 years of my quest.

Much easier to *simulate* a complex biological system than to *build the transition relation* for it.
Isn’t *Statistical Model Checking* an oxymoron?

I thought so for the first 27 years of my quest.

Much easier to *simulate* a complex biological system than to *build the transition relation* for it.

Moreover, we can *bound* the probability of error.
begin molecule types
A(b, Y~U~P)
B(a)
end molecule types

begin reaction rules
A(b) + B(a) <-> A(b!1) . B(a!1)
A(Y~U) -> A(Y~P)
end reaction rules
Existing Approach: Manual Analysis

Many simulation traces need to be carefully analyzed!
Model Checking Approach
Bounded Linear Temporal Logic (BLTL): Extension of LTL with **time bounds** on temporal operators.

Let $\sigma = (s_0, t_0), (s_1, t_1), \ldots$ be an execution of the model

- along states s_0, s_1, \ldots
- the system stays in state s_i *for time* t_i

Example: Does the concentration of protein G stay above 6000 for 2 time units and fall below 6000 before 20 time units?

- $G^2 (GProtein > 6000) \land F^{20} (GProtein < 6000)$
Semantics of BLTL

The semantics of the **timed Until** operator:

- “within time t, Φ_2 will be true and Φ_1 will hold until then ”
- σ^k: Execution trace starting at state k.
- $\sigma^k \models \Phi_1 \mathcal{U}^t \Phi_2$ iff there exists a number n such that:
 1) $\sigma^{k+n} \models \Phi_2$
 2) $\Sigma_{i<n} t_{k+i} \leq t$
 3) for each $0 \leq j < n$, $\sigma^{k+j} \models \Phi_1$

- In particular: $\mathcal{F}^t \Phi = true \mathcal{U}^t \Phi$, $\mathcal{G}^t \Phi = \neg \mathcal{F}^t \neg \Phi$
Probabilistic Model Checking

- Given a **stochastic model** \(M \) such as
 - a Discrete or Continuous Markov Chain, or
 - the solution to a stochastic differential equation
- a **Bounded Linear Temporal Logic** property \(\phi \) and a probability threshold \(\theta \in (0, 1) \).
- Does \(M \) satisfy \(\phi \) with probability at least \(\theta \)?

\[
M \models P_{\geq \theta}(\phi)
\]

- Numerical techniques compute the **precise probability** of \(M \) satisfying \(\phi \):
 - Does **NOT** scale to large systems.
BioLab 2.0

Model Checking **Biochemical Stochastic** models: $\mathcal{M} \models P_{\geq \theta}(\Phi)$?

- **BioNetGen**
- **Statistical Model Checker**
- **Model \mathcal{M}**
- **Formula monitor**
- **BLTL to Monitor compiler**
- **BLTL formula Φ**

$\mathcal{M} \models P_{\geq \theta}(\Phi)$

$\mathcal{M} \not\models P_{\geq \theta}(\Phi)$
Decides between two mutually exclusive hypotheses:
- Null Hypothesis $H_0 : \mathcal{M} \models P_{\geq \theta}(\phi)$
- Alternate Hypothesis $H_1 : \mathcal{M} \models P_{< \theta}(\phi)$

Statistical tests can determine the true hypothesis:
- based on sampling the traces of system \mathcal{M}
- answer may be wrong, but error probability is bounded.

Statistical Hypothesis Testing \rightarrow Model Checking!
Motivation - Scalability

- **State Space Exploration** often infeasible for complex systems.
 - May be relatively easy to simulate a system
- Our Goal: Provide **probabilistic guarantees** using fewer simulations
 - How to generate each simulation run?
 - How many simulation runs to generate?
- Applications: BioNetGen, Stateflow / Simulink

BioLab: A Statistical Model Checker for BioNetGen Models.
E. Clarke, C. Langmead, J. Faeder, L. Harris, A. Legay and S. Jha. *(International Conference on Computational Methods in System Biology, 2008)*
Motivation – Parallel Model Checking

• Some success with explicit state Model Checking
• More difficult to distribute Symbolic MC using BDDs.
• Learned Clauses in SAT solving are not easy to distribute.
• Multiple simulations can be easily parallelized.
• Next Generation Model Checking should exploit
 • multiple cores
 • commodity clusters
Existing Work

- [Younes and Simmons 02-06] use Wald’s **SPRT**
 - SPRT: Sequential Probability Ratio Test
- [Hérault et al. 04] use **Chernoff bound:**
 - Estimate the probability that $\mathcal{M} \models \Phi$
- [Sen et al. 04-05] use **p-value:**
 - “Approximates” the probability that $\mathcal{M} \models P_{\geq \theta}(\Phi)$ is true
- [Grosu and Smolka 05] **randomized LTL model checking:**
 - Finds counterexamples with high probability
- [Clarke et al. 09] **Bayesian approach**
 - Both hypothesis testing and estimation
 - Faster (fewer samples required)
[Younes and Simmons 06] use Wald’s **SPRT**
- **SPRT**: Sequential Probability Ratio Test

The SPRT decides between
- the **simple null hypothesis** $H_0' : M \models P_{=\theta_0}(\phi)$
 vs
- the **simple alternate hypothesis** $H_1' : M \models P_{=\theta_1}(\phi)$

SPRT is **asymptotically optimal** (when H_0' or H_1' is true)
- Minimizes the expected number of samples
- Among all tests with equal or smaller error probability.
Existing Work: SPRT

- MC chooses between two composite hypotheses:
 \[H_1 : \mathcal{M} \models P_{<\theta}(\phi) \quad H_0 : \mathcal{M} \models P_{\geq \theta}(\phi) \]
- Existing works use Wald’s SPRT for hypothesis testing with an indifference region:
 \[\mathcal{M} \models P_{=\theta-\delta}(\phi) \quad \mathcal{M} \models P_{=\theta+\delta}(\phi) \]
But MC chooses between two mutually exclusive composite hypotheses

Null Hypothesis \(H_0 : \mathcal{M} \models P_{\geq \theta}(\phi) \)
vs

Alternate Hypothesis \(H_1 : \mathcal{M} \models P_{< \theta}(\phi) \)

We have developed a new statistical MC algorithm
– Performs Composite Hypothesis Testing
– Based on Bayes Theorem and the Bayes Factor.
Model Checking **Biochemical Stochastic** models: $\mathcal{M} \models P_{\geq \theta}(\Phi)$?
Bayesian Statistical Model Checking

- **Bayesian Approach** to Statistical Model Checking
 - Faster than previous Statistical Model Checking.

- Uses **prior knowledge** about the model

- Revises **prior knowledge** in light of experimental data

\[
P(H_0 \mid X) = \frac{P(X \mid H_0)P(H_0)}{P(X)}
\]

Statistical Model Checking of Stochastic Systems
CMU CS Technical Report 09-162.
Bayesian Statistical Model Checking 1

- Model Checking \(H_0 : \mathcal{M} \models P_{\geq \theta}(\phi) \)
- Suppose \(\mathcal{M} \) satisfies \(\phi \) with (unknown) probability \(u \).
 - \(u \) is given by a random variable \(U \) with density \(g \).
 - \(g \) represents the prior belief that \(\mathcal{M} \) satisfies \(\phi \).
- Generate independent and identically distributed (iid) sample traces.
- \(x_i \): the \(i^{th} \) sample trace \(\sigma \) satisfies \(\phi \).
 - \(x_i = 1 \) iff \(\sigma_i \models \phi \)
 - \(x_i = 0 \) iff \(\sigma_i \not\models \phi \)
- Then, \(x_i \) will be a Bernoulli trial with density
 \[
 f(x_i|u) = u^{x_i}(1 - u)^{1-x_i}
 \]
- $X = (x_1, \ldots, x_n)$ a sample of Bernoulli random variables.
- Bayes Theorem (Posterior Probability):
 \[
P(H_0 \mid X) = \frac{P(X \mid H_0)P(H_0)}{P(X)}
 \]
 \[
P(H_1 \mid X) = \frac{P(X \mid H_1)P(H_1)}{P(X)}
 \]
- Ratio of Posterior Probabilities:
 \[
 \frac{P(H_0 \mid X)}{P(H_1 \mid X)} = \frac{P(X \mid H_0)P(H_0)}{P(X \mid H_1)P(H_1)}
 \]
 Bayes Factor
Bayes Factor: Measure of confidence in H_0 vs H_1
- provided by the data $X = (x_1, \ldots, x_n)$
- weighted by the prior g.

Bayes Factor $> \text{Threshold1}$: Accept Null Hypothesis H_0.
Bayes Factor $< \text{Threshold2}$: Reject Null Hypothesis H_0.

Definition: Bayes Factor \mathcal{B} of sample X and hypotheses H_0, H_1

$$\mathcal{B} = \frac{P(X \mid H_0)}{P(X \mid H_1)} = \frac{\int_\theta^1 f(x_1 \mid u) \cdots f(x_n \mid u) \cdot g(u) du}{\int_0^\theta f(x_1 \mid u) \cdots f(x_n \mid u) \cdot g(u) du}$$
Require: Property $P_{\geq \theta}(\Phi)$, Threshold $T > 1$, Prior density g

$n := 0$ \hspace{1cm} \{number of traces drawn so far\}

$x := 0$ \hspace{1cm} \{number of traces satisfying so far\}

repeat

\[\sigma := \text{draw a sample trace of the system (iid)} \]

\[n := n + 1 \]

if $\sigma \models \Phi$ then

\[x := x + 1 \]

end if

\[B := \text{BayesFactor}(n, x) \]

until $(B > T \lor B < 1/T)$

if $(B > T)$ then

return H_0 accepted

else

return H_1 accepted

end if
BioLab 2.0

Model Checking Biochemical Stochastic models: $\mathcal{M} \models P_{\geq \theta}(\Phi)$?
Model Checking Biochemical Stochastic models: $\mathcal{M} \models P_{\geq \theta}(\Phi)$?
Bayesian Model Checking: Performance

Number of Samples Needed vs. Threshold θ in the Probability Formula

Actual Probability of the Formula being True = 0.58

Actual Probability of the Formula being True = 0.93
Bayesian Model Checking: Priors

Number of Samples Needed vs. Different Choices of Prior Probability Distribution
Future Work: Cost-Based Bayesian MC

- Model Checking query: $\mathcal{M} \models P_{\geq \theta}(\Phi)$, for $0 < \theta < 1$.
- $C(N)$: Cost of generating the N^{th} sample.
- $R(u, \theta)$: Cost of incorrectly deciding the MC query
 - u is the (unknown) probability that \mathcal{M} satisfies Φ
 - θ is the probability threshold in the specification
- Then, the key problem is to compute $E[R(u, \theta) \mid X_N]$
 - expected cost of a wrong decision after observing N samples $X_N = (x_1, \ldots, x_N)$
- Stopping Criterion:
 - Stop when cost exceeds the reduction in the expected cost of making a wrong decision.

\[C(N+1) \geq E[R(u, \theta) \mid X_{N+1}] - E[R(u, \theta) \mid X_N] \]
BioLab (upcoming)

Model Checking Biochemical **Stochastic** models: $\mathcal{M} \models P_{\geq \theta}(\Phi)$?

- **BioNetGen**
 - Model \mathcal{M}

- **Bayesian Model Checker**
 - Cost based Bayesian Test
 - $\mathcal{M} \models P_{\geq \theta}(\Phi)$
 - $\mathcal{M} \not\models P_{\geq \theta}(\Phi)$

- BLTL to Monitor compiler

- Formula monitor

- BLTL formula Φ
Conclusions

- Some evidence that Statistical MC scales to large systems
 - BioNetGen Models
 - Matlab Simulink Models

- We have developed a Bayesian MC algorithm which
 - is faster than state-of-the-art approaches,
 - can use prior knowledge about the system.

- Initial experiments on BioNetGen / Matlab models are encouraging.

- Plan:
 - More complex BioNetGen and Stateflow / Simulink models
 - In particular, BioNetGen Models of **Pancreatic Cancer** from TGen
The End

Questions?