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Switching DiffusionsSwitching Diffusions
•• Interesting and useful class of hybrid systemsInteresting and useful class of hybrid systems

– Continuous diffusion component, discrete jump component

• Joint work with M. Ghosh and A. Arapostathis

– SIAM Journal on Control and Optimization, 31, September 1993.p , , p

– IEEE Trans. Automatic Control, 40, November 1995.
– SIAM J. Control and Optimization, 35, 1997, 1952-1988.

• Much work in hybrid stochastic systems builds on and adds to 

this work (later in the talk)( )

• Recent work on simulation-based methods

H S Chang M C Fu J Hu and S I Marcus Simulation based
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– H.S. Chang, M.C. Fu, J. Hu, and S.I. Marcus, Simulation-based 

Algorithms for Markov Decision Processes, Springer-Verlag, 2007.

–



Summary of ResultsSummary of Results
•• WellWell--posednessposedness and Markov properties (under general and Markov properties (under general 

assumptions) by writing as SDEs driven by Brownian motion assumptions) by writing as SDEs driven by Brownian motion 

process and Poisson random measureprocess and Poisson random measure

–– Deterministic systems: problems with wellDeterministic systems: problems with well--posednessposedness and singularities at and singularities at 

boundaries boundaries –– noise “noise “smoothssmooths” these effects” these effects

•• Occupation measures => optimize in space of measures => linear Occupation measures => optimize in space of measures => linear p p pp p p

programming approachprogramming approach

•• Compactness convexityCompactness convexity extremalextremal pointspointsCompactness, convexity, Compactness, convexity, extremalextremal pointspoints

•• Optimality of Markov (nonOptimality of Markov (non--randomized) control lawrandomized) control law
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–– In a larger class of control lawsIn a larger class of control laws

•• Dynamic programming (HJB) equationDynamic programming (HJB) equation



A Simplified ExampleA Simplified Example
•• One machine producing a single commodityOne machine producing a single commodity

•• Demand = d > 0Demand = d > 0

•• S(t) takes values in {0,1}S(t) takes values in {0,1}

•• 0: down; 1: functional.  Generator:0: down; 1: functional.  Generator:
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• The inventory equation is

⎦⎣ 11 λλ

dX(t) = (u(t) – d) dt + σ dW(t)

• Production constraint: 1)(],,0[)(;0)(,0)( =∈== tSRtutStu
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• The cost c(X) is convex, Lipschitz and asymptotically unbounded.   



Example: Switching LQGExample: Switching LQG
•• Let Let S(t)S(t) be a (continuous time) Markov chain taking values in S = {1,2,…,N} be a (continuous time) Markov chain taking values in S = {1,2,…,N} 

with generator with generator ΛΛ = [= [λλijij] such that ] such that λλijij > 0,> 0, ji ≠

•• Let  Let  X(t) X(t) be given by be given by 

)())(()]())(()())(([)( tdWtSdttutSBtXtSAtdX σ++=

• The instantaneous cost function c(x,i,u) is given by

)())(()]())(()())(([)(

where C(i) > 0, D(i) > 0 for each i.

,)()(),,( 22 uiDxiCuixc +=

• The cost is

∫ +
T

dttutSDtXtSC 22 )]())(()())(([1suplim
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∫ +
∞→T

dttutSDtXtSC
T 0

)]())(()())(([suplim



Mathematical ModelMathematical Model
S = {1,2,…,N}, U: compact

))(),(( StStX d ×ℜ∈

)),(),(),(,)(|)((
)())(),(())(),(),(()(

))(),((

tssusSsXitSjttSP
tdWtStXdttutStXbtdX

StStX

≤==+
+=

×ℜ∈

δ
σ

,),())(),(( jitOttutXij ≠+= δδλ

00 ≠≥ ∑ji λλ

Admissible control: u(.) is U-valued nonanticipative process

.0,,0 =≠≥ ∑ j ijij ji λλ

( ) p p

Markov control: u(t) = ν(X(t),S(t))

R l d t l ( ) i P(U) l d
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Relaxed control: u(.) is P(U)-valued



Mathematical Model  (cont.)Mathematical Model  (cont.)
• A function                                        can be defined so that “S(t)

has generator [λij]” in the switching diffusion process (X(.),S(.)):
ℜ→ℜ×××ℜ USh d:

j

)())()()(()(

);())(),(())(),(),(()(

dzdtpztvtStXhtdS

tdWtStXdttutStXbtdX

−=

+=

∫

σ

),()),(),(),(()( dzdtpztvtStXhtdS = ∫
ℜ

00 )0( ,)0( with 0for SSXXt ==≥

• W(.) = [W1(.),…, Wd(.)]T is a standard Wiener process

• p (dt,dz) is a Poisson random measure independent of W(.) with 

intensity                   , where m is Lebesgue measure

• p (.,.), W(.), X0 and S0 are independent

)(dzmdt×
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p (.,.), W(.), X0 and S0 are independent

• u (.) is a U-valued “nonanticipative” process



MarkovianMarkovian PropertiesProperties
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• Theorem: Under a Markov policy u, SDE admits an a.s. unique 
strong solution such that (X(.), S(.)) is Feller process w/ gen. Lu.



Cost ModelsCost Models
• Cost function

ℜ→××ℜ USc d:

• Discounted Cost: α > 0

∫∫
∞

tu ddSXEiJ ))(())()(()( )( ( ) α∫∫ −=
U
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• Average Cost
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• Objective: To find a Markov control which is optimal



A Linear Programming ApproachA Linear Programming Approach
• Discounted occupation measure
For u(.) relaxed control, define                                         by)(][ USPu d ××ℜ∈αν
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--linear over M1



ResultsResults
• Theorem: M1 = M2. M2 is compact and convex and 

.Mofpointsextremeofset the  . 2232 =⊂ ee MMM

• Theorem: There exists a Markov control v which is discounted 
t ti l f i iti l diti

p 2232

cost optimal for any initial condition.
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HamiltonHamilton--JacobiJacobi--Bellman (DP) EquationsBellman (DP) Equations
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• HJB equation for DC problem is

• Theorem: The DC value fct. Vα(x,i) is the unique solution of (*).  

(*)         ),()],,(),([inf ixuixcixLu

Uu
αφφ =+

∈
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α( , ) q ( )
A Markov control v is DC optimal if and only if it realizes the 
pointwise infimum in (*).  



Manufacturing Example

a-discounted HJB Equations

0) — d(x,0)

1) + minUEo,R] {( — d)V(x,i)}

— a + ‘\o —A0 V(x, 0)
— —A1 a+Ai Va(,1)

V(x,i) is convex in x for each i. Hence such that

V(x,1) 0 forxx*

V(x,1) 0 for x x*.

Thus an optimal control:

(R ifx<x*

v(x,0)=0, v(x,1) = d ifx=x

1 0 ifx>x.

Note: No singular situation to the presence of noise.



Average Cost Problem

• To minimize pathwise (long-run) average cost

∫
T1

• Need stability (positive recurrence or ergodicity)

∫
∞→T

dssSsXusSsXc
T 0

)))(),((),(),((1lim
Need stability (positive recurrence or ergodicity)

• Difficult: interaction of discrete & continuous components

• If, for each i, the diffusion is positive recurrent and the 
parametric Markov chain is ergodic, the hybrid system is 
not necessarily stable

• Switching between two positive recurrent processes
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Switching between two positive recurrent processes 
can result in a process that isn’t



Average Cost Problem

• Mathematics are much more complicated, but can 
prove similar results under appropriate conditionsprove similar results under appropriate conditions

• Optimality of  stationary Markov nonrandomized 
control law

• H ilt J bi B ll (d i i )• Hamilton-Jacobi-Bellman (dynamic programming) 
equations

• Stability of the optimal control law if there is 
some stable Markov nonrandomized control law
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some stable Markov nonrandomized control law



More Recent Stochastic Hybrid Systems Models

• Many models, some simpler, some generalizations

• Lygeros, Sastry, Pappas, Ghosh, Bagchi, Koutsokos

• SimplificationsSimplifications

• Piecewise deterministic systems

• Jump linear stochastic systems

• G li ti• Generalizations

• Resets (controlled and uncontrolled)
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• Jumps in continuous state



Composition, Computation, Model Checking

• Koutsokos (2008)

• V ifi ti f h bilit• Verification of reachability

• Lygeros GSHS models

• Kushner finite state Markov chain approximations

• Julius & Pappas (2009)

• Approximation & verification of stochastic hybrid systemspp y y

• Focus on jump linear stochastic systems
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• Uses approximate bisimulation (Girard and Pappas)



Simulation-Based Methods for Markov Decision 
ProcessesProcesses

Moti ation• Motivation
– Unknown random transitions/costs and/or much easier to 

simulate than to build MDP models u ate t a to bu d ode

• Examples: capacity expansion in semiconductor fab,Examples: capacity expansion in semiconductor fab, 
“transitions” involve complex simulation of entire fab;
biological systems



DP Notation

• state x, action a
• reward R(x,a) 
• value function V(x), Q-function Q(x,a)
• discount factor γ
• policy πpolicy π

G l i i t ( ( ))• Goal: maximize Σt γt R(xt, πt(xt))



Simulation-Based Setting

• setting: 
transition probabilities not explicitly known– transition probabilities not explicitly known, 
but can be easily simulated; 

– finite horizonfinite horizon
• targeted at problems with 

– huge state spaceshuge state spaces
– limited simulation budget 
– Goal: estimate optimal value function efficientlyp y

(simulation-based value iteration)

• ADAPTIVE SAMPLING: multi-armed bandit 
models to decide which actions to sample



Main Ideas
• Value function estimated based on simulated trees

• Objective: which action to sample next
(simulate to generate next sampled state)(simulate to generate next sampled state) 

• Trade off between exploitation and exploration:• Trade off between exploitation and exploration:
choose action that maximizes
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nkaxQ
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ln),(ˆ +

# stage i samples thus far (total, state/action specific)
ia,



Simple Illustrative Example
Simulated Tree for two stages, two actions

# samples per state in stage: N1=2, N2=3# samples per state in stage: N1 2, N2 3

d
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Nodes represent simulated state reached from simulation,
numbers indicate sequence of simulations carried out



Results

• provable convergence with bounded rate (bias)

• complexity O(NH)              (N = total # simulations)
vs backwards induction O(H|A||X|2)vs. backwards induction O(H|A||X| )
– independent of size of state space X (action space A)
– exponential in horizon length Hp g



Inventory Control Example



Future Directions

• With Rance Cleaveland (stochastic hybrid systems)

• C iti• Composition 

• Control, approximate bisimulation, model checking

• Special case of deterministic discrete controller, continuous 
stochastic plant

• With Ed Clarke, Sumit Jha, et. al?

• Statistical model checking with nondeterministic processes, 
Markov decision processes, hybrid stochastic systems
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• Which models important in CMACS applications?




