Stochastic Control: Hybrid Systems, Switching Diffusions, and Simulation-Based Methods

Steve Marcus
University of Maryland, College Park

November 1, 2009
Switching Diffusions

• Interesting and useful class of hybrid systems
 — Continuous diffusion component, discrete jump component

• Joint work with M. Ghosh and A. Arapostathis

• Much work in hybrid stochastic systems builds on and adds to this work (later in the talk)

• Recent work on simulation-based methods
Summary of Results

- Well-posedness and Markov properties (under general assumptions) by writing as SDEs driven by Brownian motion process and Poisson random measure
 - Deterministic systems: problems with well-posedness and singularities at boundaries – noise “smooths” these effects
- Occupation measures => optimize in space of measures => linear programming approach
- Compactness, convexity, extremal points
- Optimality of Markov (non-randomized) control law
 - In a larger class of control laws
- Dynamic programming (HJB) equation
A Simplified Example

• One machine producing a single commodity
• Demand = d > 0
• S(t) takes values in \{0, 1\}
• 0: down; 1: functional. Generator:

\[
\begin{bmatrix}
-\lambda_0 & \lambda_0 \\
\lambda_1 & \lambda_1
\end{bmatrix}
\]

• The inventory equation is

\[
dX(t) = (u(t) - d) \, dt + \sigma \, dW(t)
\]

• Production constraint: \(u(t) = 0, S(t) = 0; u(t) \in [0, R], S(t) = 1 \)
• The cost \(c(X) \) is convex, Lipschitz and asymptotically unbounded.
Example: Switching LQG

• Let \(S(t) \) be a (continuous time) Markov chain taking values in \(S = \{1, 2, \ldots, N\} \) with generator \(\Lambda = [\lambda_{ij}] \) such that \(\lambda_{ij} > 0, \ i \neq j \)

• Let \(X(t) \) be given by

\[
dX(t) = [A(S(t))X(t) + B(S(t))u(t)]dt + \sigma(S(t))dW(t)
\]

• The instantaneous cost function \(c(x, i, u) \) is given by

\[
c(x, i, u) = C(i)x^2 + D(i)u^2,
\]

where \(C(i) > 0, D(i) > 0 \) for each \(i \).

• The cost is

\[
\limsup_{T \to \infty} \frac{1}{T} \int_0^T [C(S(t))X^2(t) + D(S(t))u^2(t)]dt
\]
Mathematical Model

\[S = \{1,2,\ldots,N\}, \text{ U: compact} \]

\[(X(t), S(t)) \in \mathbb{R}^d \times S\]

\[dX(t) = b(X(t), S(t), u(t))dt + \sigma(X(t), S(t))dW(t)\]

\[P(S(t + \delta t) = j \mid S(t) = i, X(s), S(s), u(s), s \leq t) = \lambda_{ij}(X(t), u(t))\delta t + O(\delta t), i \neq j,\]

\[\lambda_{ij} \geq 0, i \neq j, \sum_j \lambda_{ij} = 0.\]

Admissible control: \(u(.)\) is U-valued nonanticipative process

Markov control: \(u(t) = \nu(X(t), S(t))\)

Relaxed control: \(u(.)\) is \(P(U)\)-valued
Mathematical Model (cont.)

• A function \(h : \mathbb{R}^d \times S \times U \times \mathbb{R} \rightarrow \mathbb{R} \) can be defined so that “\(S(t) \) has generator \([\lambda_{ij}]\)” in the switching diffusion process \((X(.), S(.))\):

\[
X(t) = X(0) + \int_0^t b(X(s), S(s), u(s))ds + \sigma(X(s), S(s))dW(s);
\]

\[
S(t) = S(0) + \int_{\mathbb{R}} \int_{\mathbb{R}} h(X(s), S(s^{-}), v, z) p(ds, dz)
\text{for } t \geq 0 \text{ with } X(0) = X_0, S(0) = S_0
\]

• \(W(.) = [W_1(.), \ldots, W_d(.)]^T \) is a standard Wiener process

• \(p(dt, dz) \) is a Poisson random measure independent of \(W(.) \) with intensity \(dt \times m(dz) \), where \(m \) is Lebesgue measure

• \(p(., .), W(., .), X_0 \) and \(S_0 \) are independent

• \(u(.) \) is a \(U \)-valued “nonanticipative” process
Markovian Properties

Define

\[L^u f(x,i) = L^u_i f(x,i) + \sum_{j=i}^{N} \lambda_{ij}(x,u) f(x,j) \]

where

\[L^u_i f(x,i) = \frac{1}{2} \sum_{j,k=1}^{d} a_{jk}(x,i) \frac{\partial^2 f(x,i)}{\partial x_j \partial x_k} + \sum_{j=1}^{d} b_{j}(x,i,u) \frac{\partial f(x,i)}{\partial x_j} \]

\[a_{jk}(x,i) = \sum_{l=1}^{d} \sigma_{jl}(x,i) \sigma_{kl}(x,i) \]

- **Theorem**: Under a Markov policy \(u \), SDE admits an a.s. unique strong solution such that \((X(.), S(.))\) is Feller process w/ gen. \(L^u \).
Cost Models

- **Cost function**
 \[c : \mathbb{R}^d \times S \times U \rightarrow \mathbb{R} \]

- **Discounted Cost:** \(\alpha > 0 \)
 \[
 J_\alpha (u(.), x, i) = E_{x,i}^u \int_0^\infty \int_U e^{-\alpha t} c(X(t), S(t), y)u(t)(dy)dt.
 \]

- **Average Cost**
 \[
 J(u(.), x) = \limsup_{T \to \infty} \frac{1}{T} \int_0^T \int_U c(X(t), S(t), y)u(t)(dy)dt
 \]

- **Objective:** To find a Markov control which is optimal
A Linear Programming Approach

• Discounted occupation measure

For \(u(.) \) relaxed control, define \(\nu_\alpha[u] \in P(\mathbb{R}^d \times S \times U) \) by

\[
\sum_{i} \int f(x, i, y)\nu_\alpha[u](dx, \{i\}, dy) = \alpha E_{x,i}^{u} \int_{0}^{\infty} e^{-\alpha t} \int f(X(t), S(t), y)u(t)(dy)dt
\]

\(M_1 = \{ \nu_\alpha[u] : u(.) \text{ is relaxed control} \} \)

\(M_2 = \{ \nu_\alpha[u] : u(.) \text{ is Markov relaxed control} \} \)

\(M_3 = \{ \nu_\alpha[u] : u(.) \text{ is Markov control} \} \)

\[
J_\alpha(u(.), x, i) = \alpha^{-1} \sum_{i} \int c(x, i, y)\nu_\alpha[u](dx, \{i\}, dy)
\]

--linear over \(M_1 \)
Results

- **Theorem:** $M_1 = M_2$. M_2 is compact and convex and $M_2^e \subseteq M_3$. M_2^e = the set of extreme points of M_2.

- **Theorem:** There exists a Markov control ν which is discounted cost optimal for any initial condition.
Hamilton-Jacobi-Bellman (DP) Equations

For $u \in U$, let

$$L^u f(x,i) = L_i^u f(x,i) + \sum_{j=1}^{N} \lambda_{ij}(x,u)f(x,j)$$

$$L_i^u f(x,i) = \frac{1}{2} \sum_{j,k=1}^{d} a_{jk}(x,i) \frac{\partial^2 f(x,i)}{\partial x_j \partial x_k} + \sum_{j=1}^{d} b_j(x,i,u) \frac{\partial f(x,i)}{\partial x_j}$$

- HJB equation for DC problem is

$$\inf_{u \in U} [L^u \phi(x,i) + c(x,i,u)] = \alpha \phi(x,i) \quad (*)$$

- **Theorem:** The DC value fct. $V_\alpha(x,i)$ is the unique solution of $(*)$. A Markov control ν is DC optimal if and only if it realizes the pointwise infimum in $(*)$.

12
Manufacturing Example

\(\alpha\)-discounted HJB Equations

\[
\begin{bmatrix}
\frac{\sigma^2}{2} V''_\alpha(x,0) - dV'_\alpha(x,0) \\
\frac{\sigma^2}{2} V''_\alpha(x,1) + \min_{u \in [0,R]} \{ (u - d)V'_\alpha(x,i) \}
\end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} c(x)
\]

\[
= \begin{bmatrix}
\alpha + \lambda_0 & -\lambda_0 \\
-\lambda_1 & \alpha + \lambda_1
\end{bmatrix}
\begin{bmatrix}
V'_\alpha(x,0) \\
V'_\alpha(x,1)
\end{bmatrix}.
\]

\(V_\alpha(x, i)\) is convex in \(x\) for each \(i\). Hence \(\exists x^*\) such that

\[
V'_\alpha(x, 1) \leq 0 \text{ for } x \leq x^* \\
V'_\alpha(x, 1) \geq 0 \text{ for } x \geq x^*.
\]

Thus an optimal control:

\[
v(x, 0) = 0, \quad v(x, 1) = \begin{cases}
R & \text{if } x < x^* \\
d & \text{if } x = x^* \\
0 & \text{if } x > x^*.
\end{cases}
\]

Note: No singular situation to the presence of noise.
Average Cost Problem

• To minimize pathwise (long-run) average cost

\[\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} c(X(s), S(s), u(X(s), S(s))) ds \]

• Need stability (positive recurrence or ergodicity)

 • Difficult: interaction of discrete & continuous components

 • If, for each i, the diffusion is positive recurrent and the parametric Markov chain is ergodic, the hybrid system is not necessarily stable

 • Switching between two positive recurrent processes can result in a process that isn’t
Average Cost Problem

• Mathematics are *much* more complicated, but can prove similar results under appropriate conditions

• Optimality of stationary Markov nonrandomized control law

• Hamilton-Jacobi-Bellman (dynamic programming) equations

• Stability of the optimal control law if there is some stable Markov nonrandomized control law
More Recent Stochastic Hybrid Systems Models

• Many models, some simpler, some generalizations

• Lygeros, Sastry, Pappas, Ghosh, Bagchi, Koutsokos

• Simplifications
 • Piecewise deterministic systems
 • Jump linear stochastic systems

• Generalizations
 • Resets (controlled and uncontrolled)
 • Jumps in continuous state
Composition, Computation, Model Checking

• Koutsokos (2008)
 • Verification of reachability
 • Lygeros GSHS models
 • Kushner finite state Markov chain approximations

• Julius & Pappas (2009)
 • Approximation & verification of stochastic hybrid systems
 • Focus on jump linear stochastic systems
 • Uses approximate bisimulation (Girard and Pappas)
Simulation-Based Methods for Markov Decision Processes

• Motivation
 – Unknown random transitions/costs and/or much easier to simulate than to build MDP model

• Examples: capacity expansion in semiconductor fab, “transitions” involve complex simulation of entire fab; biological systems
DP Notation

- state x, action a
- reward $R(x, a)$
- value function $V(x)$, Q-function $Q(x, a)$
- discount factor γ
- policy π

- Goal: maximize $\sum_t \gamma^t R(x_t, \pi_t(x_t))$
Simulation-Based Setting

- **setting:**
 - transition probabilities not explicitly known, but can be easily simulated;
 - finite horizon

- **targeted at problems with**
 - huge state spaces
 - limited simulation budget
 - Goal: estimate optimal value function efficiently (simulation-based value iteration)

- **ADAPTIVE SAMPLING:** multi-armed bandit models to decide which actions to sample
Main Ideas

• Value function estimated based on simulated trees

• Objective: which action to sample next (simulate to generate next sampled state)

• Trade off between exploitation and exploration: choose action that maximizes

\[
\hat{Q}_i(x, a) + k \sqrt{\frac{\ln n_i}{n_{a,i}^x}}
\]

stage i samples thus far (total, state/action specific)
Simple Illustrative Example

Simulated Tree for two stages, two actions

samples per state in stage: $N_1=2$, $N_2=3$

Nodes represent simulated state reached from simulation, numbers indicate sequence of simulations carried out

$$\hat{Q}_i(x, a) + k \sqrt{\frac{\ln n_i}{n_{a,i}}}$$
Results

• provable convergence with bounded rate (bias)

• complexity $O(N^H)$ \hspace{1cm} (N = total # simulations)
 vs. backwards induction $O(H|A||X|^2)$
 – independent of size of state space X (action space A)
 – exponential in horizon length H
Future Directions

• With Rance Cleaveland (stochastic hybrid systems)
 • Composition
 • Control, approximate bisimulation, model checking
 • Special case of deterministic discrete controller, continuous stochastic plant

• With Ed Clarke, Sumit Jha, et. al?
 • Statistical model checking with nondeterministic processes, Markov decision processes, hybrid stochastic systems

• Which models important in CMACS applications?