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Switching Diffusions

Interesting and useful class of hybrid systems

— Continuous diffusion component, discrete jump component

Joint work with M. Ghosh and A. Arapostathis
— SIAM Journal on Control and Optimization, 31, September 1993.

— |EEE Trans. Automatic Control, 40, November 1995.
— SIAM J. Control and Optimization, 35, 1997, 1952-1988.

Much work 1n hybrid stochastic systems builds on and adds to

this work (later 1n the talk)

Recent work on simulation-based methods

— H.S. Chang, M.C. Fu, J. Hu, and S.I. Marcus, Simulation-based
Algorithms for Markov Decision Processes, Springer-Verlag, 2007.



Summary of Results

Well-posedness and Markov properties (under general
assumptions) by writing as SDEs driven by Brownian motion
process and Poisson random measure

— Deterministic systems: problems with well-posedness and singularities at

boundaries — noise “smooths” these effects

Occupation measures => optimize in space of measures => linear

programming approach
Compactness, convexity, extremal points

Optimality of Markov (non-randomized) control law

— In a larger class of control laws

Dynamic programming (HJB) equation



A Simplified Example

One machine producing a single commodity
Demand =d >0
S(t) takes values in {0,1}

0: down; 1: functional. Generator:

A A
The inventory equation is
dX(t) = (u(t) — d) dt + o dW(t)

Production constraint:  U(t) =0,S(t) =0;u(t) €[0,R],S(t) =1

The cost ¢(X) i1s convex, Lipschitz and asymptotically unbounded.



Example: Switching LQG

Let S(t) be a (continuous time) Markov chain taking values in S = {1,2,...,N}
with generator A = [A;] such that A; >0, i j

Let X(t) be given by
dX () =[AS(t)) X (t)+ B(S(t))u(t)]dt + o(S(t))dW (1)

The instantaneous cost function ¢(X,1,U) is given by
c(x,i,u)=C(i)x* + D(i)u?,

where C(1) > 0, D(1) > 0 for each I.

The cost is

lim supTl [IC(s@)X* )+ D(S(H)u’®)]dt

T—o



Mathematical Model

S=1{1,2,...,N}, U: compact

(X (t),S(t)) e R xS
dX (t) = b(X (1), S(t),u(t))dt + o (X (t), S(t))dW (t)
P(S(t+8t)=j|S(t)=i, X(s),S(s),u(s),s<t)

= ﬂ“lj(x(t)au(t))é‘t —I_O(ét)al > ja
A; 20,0 # j,zjlij =0.

Admissible control: u(.) is U-valued nonanticipative process
Markov control: u(t) = v(X(t),S(t))
Relaxed control: u(.) is P(U)-valued



Mathematical Model (cont.)

A function h:R?xSxU xR —> R can be defined so that “S(t)
has generator [A;;]” in the switching diffusion process (X(.),S(.)):
dX (1) =b(X (1), S(t),u(t))dt + o (X (1), S(1))dW (1);
dS(t) = [ h(X (1), S(t-),v(t),2) p(dt, dz)
forﬂ’z >0 with X(0)=X,,S(0)=S,
W() =[W,(.),..., Wy()]" is a standard Wiener process

p (dt,dz) is a Poisson random measure independent of W(.) with

intensity dt x m(dz), where m 1s Lebesgue measure
P (.,.), W(.), X, and S, are independent

u (.) 1s a U-valued “nonanticipative” process



Markovian Properties

Detfine
N

L' f(x,0) =L f(x,0)+ > 4, (xu) F(X, j)
j=i

where

9 (ki) = - Zajk( azf(xn Zb(X,l, 8f(X|)

a; (X,1)= ian (X, Doy (X,1)

« Theorem: Under a Markov policy u, SDE admits an a.s. unique
strong solution such that (X(.), S(.)) 1s Feller process w/ gen. LY.



Cost Models

Cost function
c:RIxSxU >R

Discounted Cost: > 0
J, U(),x,0) = Eifﬂ]o [ec(X (®),S (1), yyu(t)dy)dt.
J_(X1) =i1gJa(u(.),x,i)

Average Cost

J(u(),x) = lim supTl [ [ex,s@),y)ut)(dy)dt

T—o

Objective: To find a Markov control which is optimal



A Linear Programming Approach

« Discounted occupation measure
For u(.) relaxed control, define v _[u]e P(R*xSxU) by

> j f (%1, y)v, [u](dx,{i},dy) = oE" j g j f (X (1),S(t), y)u(t)(dy)dt
={v_[u]:u(.)1s relaxed control }
= {v_[u]:u(.)1s Markov relaxed control}
={v_[u]:u(.)1s Markov control}

JUOXD=a" [exi, yv, [ul(dx, i}, dy)

i R xU

--linear over M,
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Results

Theorem: M, = M,. M, is compact and convex and

M, < M,. M, =theset of extreme points of M.,.

Theorem: There exists a Markov control v which is discounted
cost optimal for any initial condition.
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Hamilton-Jacobi-Bellman (DP) Equations

Foru eU, let

LY f(x,i)=L'f (x,i)+izij(x,u) f (X, j)

] 1 L0 (i) . of (X,
Lif(x,|):§;1ajk(x,|) =~ E?Xk)+z;bj(x,|,u) c’gx )
j.k= ] J= J

« HJB equation for DC problem i1s
inf[L'g(X, 1) +C(X,1,0)] = ag(X,1) (*)
ue

e Theorem: The DC value fct. V (x,1) is the unique solution of (*).
A Markov control v 1s DC optimal if and only if it realizes the
pointwise infimum in (*).
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Manufacturing Example

a-discounted HJB Equations

2 yi(z,0) — dV.(z,0) } [
[ %23 V'(z,1) + mingepr {(v—d)Vi(z,1)} i

B [a+,\0 —)o }[Va(x,O)}
Tl M et M [ Vels D [

V.(z,1) is convex in z for each . Hence 3z* such that

Vi(z,1) < 0forz <z~
V!(z,1) > 0forz >z~

Thus an optimal control:

R ifz<<z
v(z,0) =0, v(z,1) = { d Hz=2
0 ifz>z"

Note: No singular situation to the presence of noise.



Average Cost Problem

® To minimize pathwise (long-run) average cost

T

limTl j C(X(8),S(s),u(X(s),S(s)))ds

T—o 0

® Need stability (positive recurrence or ergodicity)
® Difficult: interaction of discrete & continuous components

® If, for each 1, the diffusion 1s positive recurrent and the
parametric Markov chain 1s ergodic, the hybrid system 1is

not necessarily stable

® Switching between two positive recurrent processes

can result 1n a process that 1sn’t
13



Average Cost Problem

® Mathematics are much more complicated, but can

prove similar results under appropriate conditions

® Optimality of stationary Markov nonrandomized

control law

® Hamilton-Jacobi-Bellman (dynamic programming)

equations

® Stability of the optimal control law if there 1s

some stable Markov nonrandomized control law

14



More Recent Stochastic Hybrid Systems Models

® Many models, some simpler, some generalizations
® Lygeros, Sastry, Pappas, Ghosh, Bagchi, Koutsokos

® Simplifications
® Piecewise deterministic systems

® Jump linear stochastic systems

® Generalizations
® Resets (controlled and uncontrolled)

® Jumps in continuous state

15



Composition, Computation, Model Checking

® Koutsokos (2008)
® Verification of reachability
® Lygeros GSHS models

® Kushner finite state Markov chain approximations

® Julius & Pappas (2009)

® Approximation & verification of stochastic hybrid systems
® Focus on jump linear stochastic systems

® Uses approximate bisimulation (Girard and Pappas)
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Simulation-Based Methods for Markov Decision
Processes

 Motivation

— Unknown random transitions/costs and/or much easier to
simulate than to build MDP model

« Examples: capacity expansion in semiconductor fab,
“transitions” involve complex simulation of entire fab;
biological systems



DP Notation

state X, action a

reward R(x,a)

value function V(x), Q-function Q(x,a)
discount factor vy

policy &

Goal: maximize X, y* R(X,, T(x,))



Simulation-Based Setting

setting:
— transition probabilities not explicitly known,
but can be easily simulated;

— finite horizon
targeted at problems with
— huge state spaces

— limited simulation budget

— @oal: estimate optimal value function efficiently
(stmulation-based value 1teration)

ADAPTIVE SAMPLING: multi-armed bandit
models to decide which actions to sample



Main Ideas

 Value function estimated based on simulated trees

* Objective: which action to sample next
(stmulate to generate next sampled state)

« Trade off between exploitation and exploration:
choose action that maximizes

# stage 1 samples thus far (total, state/action specific)



Simple Illustrative Example

Simulated Tree for two stages, two actions
# samples per state in stage: N,=2, N,=3

4?

x0

don’t expand

8?

don’t expand

Nodes represent simulated state reached from simulation,
numbers indicate sequence of simulations carried out



Results

e provable convergence with bounded rate (bias)

« complexity O(NH) (N = total # simulations)
vs. backwards induction O(H|A[|X]?)
— 1ndependent of size of state space X (action space A)
— exponential in horizon length H



value function estimate

value function estimate

Inventory Control Example
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Future Directions

® With Rance Cleaveland (stochastic hybrid systems)
® Composition

® Control, approximate bisimulation, model checking

® Special case of deterministic discrete controller, continuous

stochastic plant

®* With Ed Clarke, Sumit Jha, et. al?

® Statistical model checking with nondeterministic processes,

Markov decision processes, hybrid stochastic systems

® Which models important in CMACS applications?
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