

CMACS/AVACS Workshop

Parameter Identification using δ -Decisions for Hybrid Systems in Biology

Bing Liu Joint work with Soonho Kong, Sean Gao, Ed Clarke

Biological System

Bolinsky et al. SIGGRAPH, 2006

Computational Modeling

Building a model

- Structure
- Calibration
 (parameter estimation)
- Validation
- Performing analysis

 $= -k_1.c_1.c_2 + k_2.c_3$ $.c_3.c_4 + k_4c_5 + k_{11}.c_{11} + k_{20}.c_{21}$ $.c_{5}.c_{6} - k_{6}.c_{7} - k_{7}.c_{7}.c_{8} + k_{8}.c_{9}$

Computational Modeling

Building a model

- Structure
- Calibration
 (parameter estimation)
- Validation
- Performing analysis

Computational Modeling

- Formalisms
 - Differential equations
 - Boolean network
 - Petri nets
 - Rule-based models

••••

• Multi-mode?

"And that's why we need a computer."

- Activation of different networks at different stages
 - E.g. Cell cycle, Cell differentiation

Cell Cycle

- More examples:
 - *E. coli* chemotaxis, kinesin walking, gene transcription, drug treatment,

- Evolve in a **continuous** way in each mode
- Ruled by discrete transitions
- Hybrid automata

 $H = \langle X, Q, \text{flow}, \text{guard}, \text{reset}, \text{inv}, \text{init} \rangle$

 $H = \langle X, Q, \text{Init}, \text{Flow}, \text{Jump} \rangle$

- A continuous space $X \subseteq \mathbf{R}^k$ and a finite set of modes Q
- Init $\subseteq Q \times X$: initial configurations
- Flow : continuous flows
 - Each mode q is equipped with differential equations

$$\frac{d\vec{x}}{dt} = f_q(\vec{x}, t)$$

- Jump : discrete
 - The systems can be switched from to , resetting modes and variables

Hurdles

- How to answer questions such as:
 - Which model structure is better?
 - What conditions may lead to a desired state?
 - How to control the system to avoid bad states?

•

- **Parameter synthesis** problem
- Analyzing nonlinear hybrid automata is challenging
 - even simple reachability questions can be **undecidable**

Our Approach

- Use δ-complete decision procedures to tackle the parameter synthesis problem for nonlinear hybrid models
 - Encode a parameter synthesis problem as a first-order formula over the reals
 - Perform bounded model checking
 - Employ an interval constrains propagation (ICP) based algorithm to identify the resulting parameters

Delta-Decisions

- A decision procedure using numerical techniques (with an error bound δ):
 - φ is false
 - $\varphi^{-\delta}$ is true
- The delta-decision problem is decidable for bounded first-order formulas over arbitrary Type 2 computable functions
 - exp, sin, etc, and Lipschitz-continuous ODEs

δ -Complete Bounded Model Checking

- Practical tools:
 - dReal and dReach
 - DPLL(T), interval arithmetic, constraint solving, reliable integration, etc.

Case Studies - I

- Prostate cancer
 - Second leading cause of cancer-related deaths among men in US
- Hormone therapy
 - Androgen deprivation
 - Continuous androgen suppression (CAS)
 - Intermittent androgen suppression (IAS)

Continuous Androgen Suppression

- Side effects: anemia, osteoporosis, impotence, etc.
- Relapse after a median duration of 18-24 months, due to the proliferation of androgen independent (AI) cancer cells.

Intermittent Androgen Suppression

- Reduce side effects
- May delay the time to relapse
 - Avoid emergence of AI cells

Intermittent Androgen Suppression

- Clinical phase II and III trials confirm its advantage in terms of quality of life and cost
- For time to relapse and cancer-specific survival, its advantage depends on individual patients and the treatment scheme
- How to design a personalized treatment scheme for each individual patient?

Model

• Population of AD cells, AI cells, serum androgen concentration, PSA level (Ideta et al. 2008)

$$flow_{1}: x + y \ge r_{1} \wedge \frac{dx}{dt} + \frac{dy}{dt} > 0$$
flow_{1}:
$$\frac{dx}{dt} = \left(\alpha_{x}\left(k_{1} + \frac{(1-k_{1})z}{z+k_{2}}\right) - \beta_{x}\left(k_{3} + \frac{(1-k_{3})z}{z+k_{4}}\right) - m_{1}\left(1 - \frac{z}{z_{0}}\right)\right)x$$

$$\frac{dy}{dt} = m_{1}\left(1 - \frac{z}{z_{0}}\right)x + \left(\alpha_{y}\left(1 - d\frac{z}{z_{0}}\right) - \beta_{y}\right)y$$

$$\frac{dz}{dt} = -\frac{z}{\tau}$$

$$\frac{dy}{dt} = \left(\alpha_{x}\left(k_{1} + \frac{(1-k_{1})z}{z+k_{2}}\right) - \beta_{x}\left(k_{3} + \frac{(1-k_{3})z}{z+k_{4}}\right) - m_{1}\left(1 - \frac{z}{z_{0}}\right)\right)x$$

$$+ m_{1}\left(1 - \frac{z}{z_{0}}\right)x + \left(\alpha_{y}\left(1 - d\frac{z}{z_{0}}\right) - \beta_{y}\right)y$$

$$jump_{1 \rightarrow 2}:$$

$$x + y \le r_{0} \wedge \frac{dx}{dt} + \frac{dy}{dt} < 0$$
18

Model

- Proliferation, apoptosis, mutation rates
- Treatment thresholds: r_o and r_1

$$jump_{2\to1}: x + y \ge r_1 \land \frac{dx}{dt} + \frac{dy}{dt} > 0$$

flow₁:
$$\frac{dx}{dt} = \left(\alpha_x \left(k_1 + \frac{(1-k_1)z}{z+k_2}\right) - \beta_x \left(k_3 + \frac{(1-k_3)z}{z+k_4}\right) - m_1 \left(1 - \frac{z}{z_0}\right)\right) x$$
$$\frac{dy}{dt} = m_1 \left(1 - \frac{z}{z_0}\right) x + \left(\alpha_y \left(1 - d\frac{z}{z_0}\right) - \beta_y\right) y$$
$$\frac{dz}{dt} = \frac{-z}{\tau}$$
$$\frac{dy}{dt} = \left(\alpha_x \left(k_1 + \frac{(1-k_1)z}{z+k_2}\right) - \beta_x \left(k_3 + \frac{(1-k_3)z}{z+k_4}\right) - m_1 \left(1 - \frac{z}{z_0}\right)\right) x$$
$$+ m_1 \left(1 - \frac{z}{z_0}\right) x + \left(\alpha_y \left(1 - d\frac{z}{z_0}\right) - \beta_y\right) y$$
$$Jump_{1\to2}: x + y \le r_0 \land \frac{dx}{dt} + \frac{dy}{dt} < 0$$

Model Selection

- Hypothesis 1
 - AI cells grow at the constant rate independent of the androgen level
- Hypothesis 2
 - AI cells do not grow when the androgen level is normal
- Hypothesis 3
 - AI cells decrease when the androgen level is normal

Model Selection

Observation

- When $r_o = 4$ (ng ml⁻¹) and $r_1 = 10$ (ng ml⁻¹), cancer relapse can be avoided within 1000 days
- Define cancer relapse: PSA level > 30 ng ml⁻¹
- Bounded model checking
 - Property: 900≤*tau*≤1000 ∧ *V*≤30
 - H1: unsat
 - H2: unsat
 - H3: sat

- Personalized parameters
 - α_{y} the proliferation rate of AI cells
 - β_{y} the apoptosis rate of AI cells
 - *m*₁ the mutation rate from AD to AI cells
 - *z*(*o*) the initial androgen level

• Different patients may response differently to the same treatment scheme ($r_o = 4$ and $r_1 = 10$)

- Apply IAS therapy to a patient for 1-2 cycles and measure PSA time serials
- Estimate personalized parameters by fitting PSA data
- Given r_0 in [0,8) and r_1 in [8,15], verify if H3 can reach $900 \le tau \le 1000 \land V \le 30$ (i.e. no relapse)
 - False: androgen suppression does not work
 - True: feasible values for r_o and r_i will be returned.

- Patients dataset:
 - 109 patients
 - Phase II clinical trials (Bruchovsky et al, Cancer, 2007)
- Partial results:

Case Studies - II

• Cardiac cell

- Minimal Resistor Model (Fenton et al, J Theor Biol, 2008)
- The electrical activity are governed by opening and closing of ion channels

Cardiac Disorders

• When the cardiac cell loses its excitability, it will lead to disorders such as ventricular tachycardia and fibrillation

Cardiac Disorders

- When the cardiac cell loses its excitability, it will lead to disorders such as ventricular tachycardia and fibrillation
- Under what circumstances, a cardiac cell will fail to generate a successful AP (i.e. globally $u < \theta_v$)?
 - Related parameter ranges identified by Grosu et al. CAV 2011 (linear approximation)
 - We answer this by identifying the ranges for parameters in the **original** nonlinear model

$$\tau_{o1} \in (0, 0.006) \lor \tau_{o2} \in (0, 0.13) \lor 6.2\tau_{o2} + \tau_{o1} \ge 9.9$$

Summary

- A delta-decision based framework for parameter identification
 - Model selection
 - Therapy optimization
 - Diseased-related conditions identification
- What's next
 - More analysis for cardiac cell model
 - Parameter estimation
 - DNA damage induced cellular senescence