
The Power of Proofs: New
Algorithms for Timed
Automata Model Checking
Peter Fontana and Rance Cleaveland
Department of Computer Science
CMACS 2013: Nov 22, 2013

1

Goal: Automatic Verification
with Timing Constraints

Formally verify program correctness

Automate the verification

Handle time and timing constraints, both in
model and specification

2

Timing Constraints Exist:
Model Constraints

We allow the
train to wait
for different
amounts of
time

The gate takes
time to lower

3

Timing Constraints Exist:
Specification Constraints

The gate will
be up within 2
minutes after a
train leaves

Any train is in
the region is in
the region for
at most 4
minutes

4

Our Framework

Programs modeled with timed automata

Properties specified with a timed mu-calculus (a
modal logic)

5

Tool Implementation Exists

Peter Fontana and Rance Cleaveland. On-The-Fly
Timed Automata Model Checking. Presented at
CMACS PI Meeting on May 16, 2013

6

The Power of Proofs

This tool generates a mathematical proof

Verification using proof rules

We optimize performance by using derived
proof rules

7

The Trick: Memoization

“Those who cannot remember the past are
condemned to repeat it” (George Santayana)

8

The Trick: Memoization

9

Fibonacci Series: a0 = 1, a1 = 1, an = an-2 + an-1

Compute a4:

a4 = a2 + a3

a2 = a1 + a0 = 1 + 1 = 2
Memoization: Store “a2 = 2”
a4 = 2 + a3
a4 = 2 + (a2 + a1)

The Details

10

Model: Timed Automata (State
Machine + Clocks) [AD94]

0: far

1: near
x1 < 4

2: in
x1 < 15 in, x1 = 4, x1 := 0 approach,

x1 := 0

exit, x1 > 1, x1 := 0

11

Alur-Dill Model: timing constraints use clocks

A state is a (location, clock values) pair

Specification: Timed Modal
Mu-Calculus Lrel

ν,µ

Boolean Logic

Variables Xi

Action Modalities

Time Modalities

Fixpoints

Relativized Time Modalities

12

ǌ
= � ǋ

=

>D@(ĳ), �D�(ĳ)� >� @(ĳ), ���(ĳ)

�(ĳ)� �(ĳ)

�ĳ�(ĳ�)� �ĳ�(ĳ�)

Fixpoints

13

Definition (Formal): A fixpoint of a function f is a
value x such that f(x) = x

The Power of Fixpoints:
Writing Always Recursively

Always p: p is true now, and Always p is true in
all next states.

Note: This simplified formula assumes p only
contains atomic propositions

14

;�
ǌ
= S � �(>� @(;�))

The Power of Fixpoints:
Formulas Represent States

Always p: p is true now, and Always p is true in
all next states.

X1 is a set of states computed by this formula

Function f:

15

;�
ǌ
= S � �(>� @(;�))

I(;�) = S � �(>� @(;�))

The Power of Fixpoints:
Recursion as Local Search

16

Always p: p is true now, and Always p is true in
all next states.

1.  Have X1 start at the initial state
2.  Formula transitions X1 to all next states

3.  Stop when X1 is a previously seen state

Greatest Fixpoint (ν): Visiting a previous state
implies formula truth

;�
ǌ
= S � �(>� @(;�))

The Power of Fixpoints: Never
broken (AG)

0: far

1: near
x1 < 4

2: in
x1 < 15 in, x1 = 4, x1 := 0 approach,

x1 := 0

exit, x1 > 1, x1 := 0

17

Verifier: Location 0: far is not broken

The Power of Fixpoints: Never
broken (AG)

0: far

1: near
x1 < 4

2: in
x1 < 15 in, x1 = 4, x1 := 0 approach,

x1 := 0

exit, x1 > 1, x1 := 0

18

Verifier: Location 0: far is not broken

The Power of Fixpoints: Never
broken (AG)

0: far

1: near
x1 < 4

2: in
x1 < 15 in, x1 = 4, x1 := 0 approach,

x1 := 0

exit, x1 > 1, x1 := 0

19

Verifier: Location 1: near is not broken

The Power of Fixpoints: Never
broken (AG)

0: far

1: near
x1 < 4

2: in
x1 < 15 in, x1 = 4, x1 := 0 approach,

x1 := 0

exit, x1 > 1, x1 := 0

20

Verifier: Location 1: near is not broken

The Power of Fixpoints: Never
broken (AG)

0: far

1: near
x1 < 4

2: in
x1 < 15 in, x1 = 4, x1 := 0 approach,

x1 := 0

exit, x1 > 1, x1 := 0

21

Verifier: Location 2: in is not broken

The Power of Fixpoints: Never
broken (AG)

0: far

1: near
x1 < 4

2: in
x1 < 15 in, x1 = 4, x1 := 0 approach,

x1 := 0

exit, x1 > 1, x1 := 0

22

Verifier: Location 2: in is not broken

The Power of Fixpoints: Never
broken (AG)

0: far

1: near
x1 < 4

2: in
x1 < 15 in, x1 = 4, x1 := 0 approach,

x1 := 0

exit, x1 > 1, x1 := 0

23

Verifier: We have visited 0: far again (circularity);
apply greatest fixpoint

Proof Rules: One Step at A
Time (X1: Always not broken)

24

3UHPLVH � . . . 3UHPLVH Q �5XOH 1DPH�
&RQFOXVLRQ

(� : IDU, {[� = �}) � ;�

(� : IDU, {[� = �}) � ¬EURNHQ � DOO QH[W VWDWHV ;�

(� : QHDU, {[� = �}) � ;�
. . .

(� : IDU, {[� = �}) � ;� True (Greatest fixpont)

Relativization Operators

25

Definition: Lrel
ν,µ relativization operators are:

Definition by duality:

Obtaining Lν,µ operators:

�ĳ�(ĳ�)
GHI� ¬�¬ĳ�(¬ĳ�)

�tt(ĳ),�ff(ĳ)

�ĳ�(ĳ�)� IRU DOO WLPHV į� < į� ĳ� LV WUXH

�ĳ�(ĳ�)� ĳ� UHOHDVHV ĳ� IURP EHLQJ WUXH

Relativization Operators give
Expressive Power

26

Theorem: We can express all of TCTL in Lrel
ν,µ

Relativization Operators?!?
We Need Them!

27

Theorem: We cannot express TCTL formula Aφ1Rφ2
in Lν,µ

Proof Rule Optimization 1:
Relativized All

28

Lemma:

Use proof of derivation to generate a derived rule

�ĳ�(ĳ�) � �(ĳ�) � �ĳ�(ĳ� � ĳ�)

Relativized All Optimization:
Rewrite a Subrule

29

�(ĳ�) � ��ĳ�(ĳ�)
�(ĳ�) � �ĳ�(ĳ� � ĳ�)

�ĳ�(ĳ�)

φ2
Before

After

φ1 ∧ φ2

φ2 φ1

Relativized All Optimization:
Memoize φ2

30

1.  Find all states that satisfy φ1

2.  Find all states that satisfy φ2

3.  Reason with memoized stored states to handle
logic operators

�(ĳ�) � �
� ĳ�

(ĳ�)

�� �

Correctness of Proof Rules

31

Theorem: The proof rules (original and derived)
are sound and complete.

Conclusion

Implementation can check more
specifications: the entire alternation-free
fragment of Lrel

Using derived proof rules optimizes
performance

32

Future Work

Further Proof Utilization: Extra verification
information

Performance optimization

33

34

