The Power of Proofs: New Algorithms for Timed Automata Model Checking

Peter Fontana and Rance Cleaveland Department of Computer Science CMACS 2013: Nov 22, 2013

Goal: Automatic Verification with Timing Constraints

Formally verify program correctness

Automate the verification

Handle **time and timing constraints**, both in model and specification

Timing Constraints Exist: Model Constraints

We allow the train to wait for different amounts of time

The gate takes time to lower

Timing Constraints Exist: Specification Constraints

The gate will be up within 2 minutes after a train leaves

Any train is in the region is in the region for at most 4 minutes

Our Framework

Programs modeled with **timed automata**

Properties specified with a **timed mu-calculus** (a modal logic)

Tool Implementation Exists

Peter Fontana and Rance Cleaveland. *On-The-Fly Timed Automata Model Checking*. Presented at CMACS PI Meeting on May 16, 2013

The Power of Proofs

This tool generates a **mathematical proof** Verification using **proof rules** We optimize performance by using **derived** proof rules

The Trick: Memoization

"Those who cannot remember the past are condemned to repeat it" (George Santayana)

The Trick: Memoization

Fibonacci Series: $a_0 = 1$, $a_1 = 1$, $a_n = a_{n-2} + a_{n-1}$

Compute a_4 :

 $a_4 = a_2 + a_3$ $a_2 = a_1 + a_0 = 1 + 1 = 2$ Memoization: Store "a2 = 2" $a_4 = 2 + a_3$ $a_4 = 2 + (a_2 + a_1)$

The Details

Model: Timed Automata (State Machine + Clocks) [AD94]

Alur-Dill Model: timing constraints use clocks

A state is a (location, clock values) pair

Specification: Timed Modal Mu-Calculus L^{rel}_{v,µ}

Boolean Logic

Variables X_i

Action Modalities $[a](\phi), \langle a \rangle(\phi), [-](\phi), \langle - \rangle(\phi)$

Time Modalities $\forall(\boldsymbol{\varphi}), \exists(\boldsymbol{\varphi})$

Fixpoints $\stackrel{v}{=}, \stackrel{\mu}{=}$

Relativized Time Modalities $\forall \varphi_1(\varphi_2), \exists \varphi_1(\varphi_2) \end{pmatrix}$

Definition (Formal): A **fixpoint** of a function f is a value x such that f(x) = x

The Power of Fixpoints: Writing Always Recursively

Always p: p is true now, and Always p is true in all next states.

 $X_1 \stackrel{v}{=} p \land \forall ([-](X_1))$

Note: This simplified formula assumes p only contains atomic propositions

The Power of Fixpoints: Formulas Represent States

Always p: p is true now, and **Always p** is true in all next states.

$$X_1 \stackrel{\mathsf{v}}{=} p \land \forall ([-](X_1))$$

 X_1 is a **set of states** computed by this formula

Function f: $f(X_1) = p \land \forall ([-](X_1))$

The Power of Fixpoints: Recursion as Local Search

Always p: p is true now, and **Always p** is true in all next states.

 $X_1 \stackrel{v}{=} p \land \forall ([-](X_1))$

- **1.** Have X_1 start at the initial state
- **2.** Formula transitions X_1 to all next states
- **3.** Stop when X_1 is a previously seen state

Greatest Fixpoint (v): Visiting a previous state implies formula truth

Verifier: Location 0: far is not broken

Verifier: Location 0: far is not broken

Verifier: Location 1: near is not broken

Verifier: Location 1: near is not broken

Verifier: Location 2: in is not broken

Verifier: Location 2: in is not broken

Verifier: We have visited **0: far** again (circularity); apply **greatest** fixpoint

Proof Rules: One Step at A Time (X₁: Always not broken)

Premise 1 ... Premise *n* (*Rule Name*) Conclusion

$$(0: far, \{x_1 = 0\}) \vdash X_1$$
 True (Greatest fixpont)

 $(1: near, \{x_1 = 0\}) \vdash X_1$

 $(0: far, \{x_1 = 0\}) \vdash \neg broken \land all next states X_1$

 $(0: far, \{x_1 = 0\}) \vdash X_1$

Relativization Operators

Definition: $L^{rel}_{\nu,\mu}$ relativization operators are: $\exists_{\varphi_1}(\varphi_2)$: for all times $\delta' < \delta$, φ_1 is true $\forall_{\varphi_1}(\varphi_2)$: φ_1 releases φ_2 from being true

Definition by **duality**: $\exists_{\varphi_1}(\varphi_2) \stackrel{def}{\equiv} \neg \forall_{\neg \varphi_1}(\neg \varphi_2)$ Obtaining $\mathsf{L}_{\mathsf{v},\mathsf{u}}$ operators: $\exists_{\mathsf{tt}}(\varphi), \forall_{\mathtt{ff}}(\varphi)$

Relativization Operators give Expressive Power

Theorem: We can express all of TCTL in $L^{rel}_{\nu,\mu}$

Relativization Operators?!? We Need Them!

Theorem: We cannot express TCTL formula $A\phi_1 R\phi_2$ in $L_{\nu,\mu}$

Proof Rule Optimization 1: Relativized All

Lemma: $\forall_{\varphi_1}(\varphi_2) \equiv \forall(\varphi_2) \lor \exists_{\varphi_2}(\varphi_1 \land \varphi_2)$

Use proof of derivation to generate a derived rule

Relativized All Optimization: Rewrite a Subrule

Relativized All Optimization: Memoize ϕ_2

$$\forall (\boldsymbol{\varphi}_2) \lor \exists_{\leq \boldsymbol{\varphi}_2} (\boldsymbol{\varphi}_1)$$

1. Find **all states** that satisfy ϕ_1

- 2. Find **all states** that satisfy ϕ_2
- Reason with memoized stored states to handle logic operators ∀, ∃

Correctness of Proof Rules

Theorem: The proof rules (original and derived) are **sound** and **complete**.

Conclusion

Implementation can check more specifications: the entire alternation-free fragment of L^{rel}

Using derived proof rules optimizes performance

Further Proof Utilization: Extra verification information

Performance optimization

