CMACS Computational Modeling and Analysis for Complex Systems

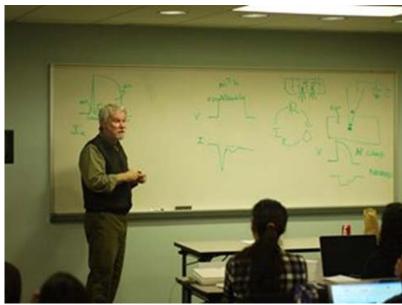
Workshops on Computational Modeling of Complex Systems

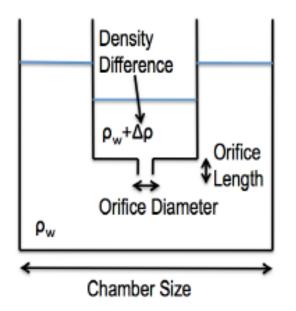
Nancy Griffeth and Flavio Fenton Nov 21, 2013

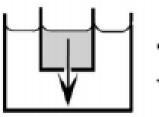
2013 NSF-CMACS Workshop on Atrial Fibrillation

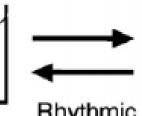
January 7, 2013 - January 25, 2013 from 10 am to 4 pm, Monday to Friday

CMACS Workshop Objectives

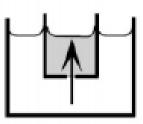

- Disseminate project work among promising students
- Encourage enthusiasm for research and modeling complex systems
- Find good prospects for REU and graduate programs
- Encourage under-represented minorities to enter STEM fields
- Encourage inter-disciplinary work
- Develop course materials

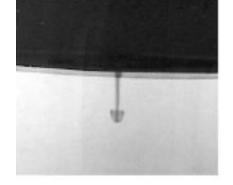

- Lectures by Nancy Griffeth and Flavio Fenton
- Guest lectures (Robert Gilmour, Bard Ermentrout and Elizabeth Cherry)
- Labs with hands on experiments
- Computer labs with exercises in Java and webGL.
- Final project using GPU computing.

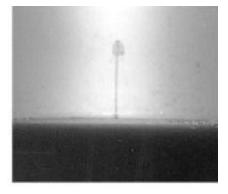




CMACS Saline oscillator

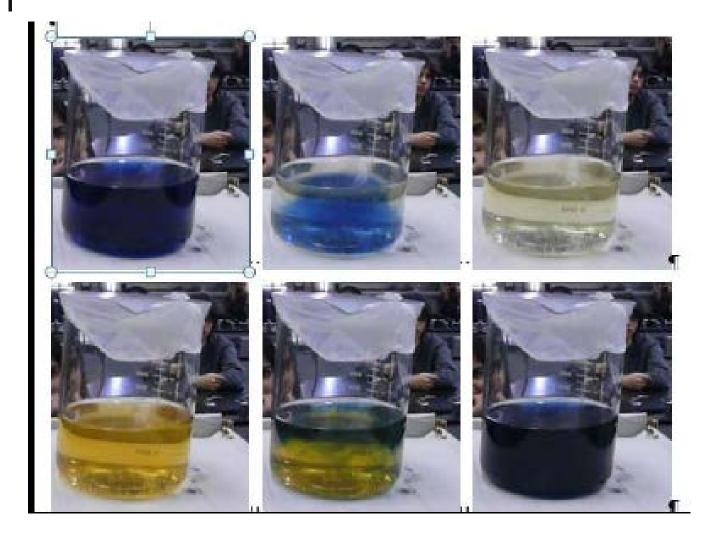



Downward flow of saline water



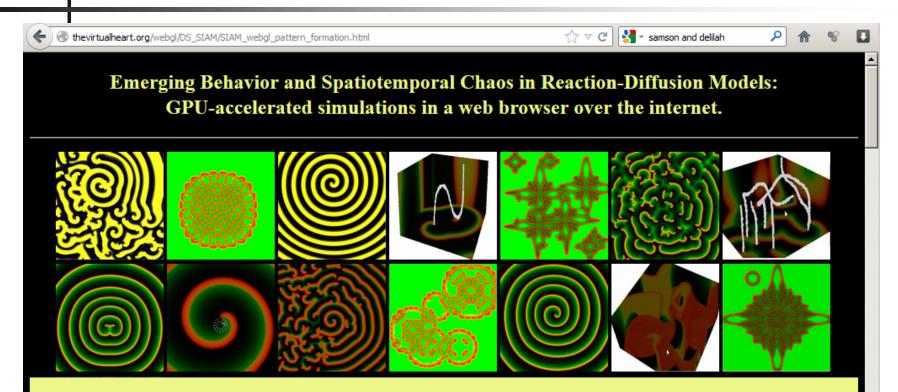
Rhythmic change

Upward flow of water



CMACS Chemical Oscillator

CMACS Chemical Oscillator


CMACS Chemical Oscillator

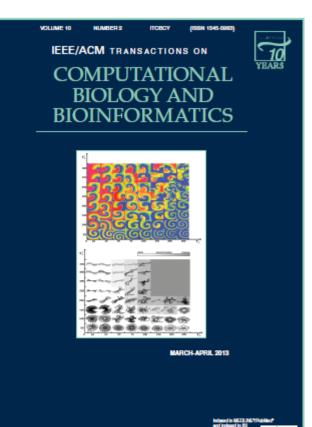
CMACS Real time numerical simulations

We present here a set of interactive programs to study and analyze several models of excitable media in tissue. As the waves they produce propagate through the media, the models exhibit complex spatiotemporal dynamics that cannot be appreciated from an analysis of the underlying equations or even verbal descriptions. Here, we allow users to perform in real time simulations of these models and to watch the patterns develop and change over time as the simulated dynamical waves propagate. The parameters governing the model's behavior can be changed on the fly to alter the dynamics. In addition, users can apply perturbations and periodic pacing, that change the patterns locally an globaly and watch the response.

One of the main advantages of these programs is that the models are implemented using WebGL, which allows the simulations to be run over the Internet, independent of computer architecture and operating system. WebGL utilizes available hardware, including graphics cards, to improve

CMACS Real time numerical simulations

CMACS Lunches with students

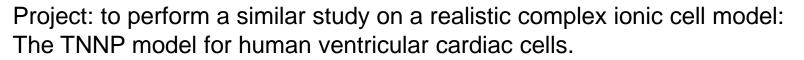

Last workshop:

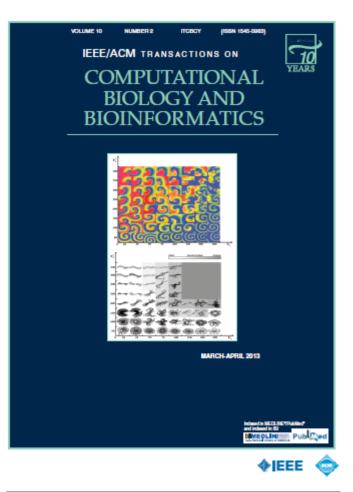
CMACS Final Projects

Last workshop:

Teaching cardiac electrophysiology modeling to undergraduate students: laboratory exercises and GPU programming for the study of arrhythmias and spiral wave dynamics

Ezio Bariocci,¹ Rupinder Singh,² Frederick B. von Siein,³ Avessle Amedome,⁴ Alan Joseph J. Caceres,⁴ Juan Castillo,⁴ Evan Closser,³ Gabriel Deards,⁴ Andriy Goltsev,⁴ Roumwelle Sta. Ines,⁴ Cem Isbilir,⁴ Joan K. Marc,⁴ Diquan Moore,⁴ Dana Pardi,⁴ Sandeep Sadhu,⁴ Samuel Sanchez,⁴ Pooja Sharma,⁴ Anoopa Singh,⁴ Joshua Rogers,⁴ Aron Wollnetz,⁴ Terri Grosso-Applewhite,⁴ Kal Zhao,⁴ Andrew B. Filipski,⁵ Robert F. Gilmour, Jr.,³ Radu Grosu,⁶ James Glimm,¹ Scott A. Smolka,⁶ Elizabeth M. Cherry,^{3,2} Edmund M. Clarke,⁸ Nancy Griffeth,⁴ and Flavio H. Fenton³ ¹Department of Applied Mathematics and Statistics, Story Brook University, Story Brook; Department of ²Biomedical Engineering and ³Biomedical Sciences, Cornell University, Ithaca; ⁴The City University of New York; New York; ⁵Department of Software Engineering, Rochester Institute of Technology, Rochester; ⁶Department of Computer Science, Story Brook University, Story Brook; Parament of Computer Science, New York; and ⁸Computer Science Department, Camegie Mellon University, Pittbargh, Penneyloania




This workshop:

2013 Workshop: Student Exercises and Projects

Final Presentations

- » Group 1: <u>G_CaL versus G_Na</u>
- » Group 2: <u>G_CaL versus G_K1</u>
- » Group 3: <u>G_CaL versus G_Ks</u>
- » Group 4: <u>G_Na versus G_K1</u>
- » Group 5: <u>G_Na versus G_Ks</u>
- » Group 6: <u>G_Na versus k_NaCa</u>
- » Group 7: G_CaL versus k_NaCa

CMACS Success of the workshop thanks to:

Nancy Griffeth

Guest lecturers:

- Robert Gilmour
- Bard Ermentrout
- Elizabeth Cherry

Grad students:

- Aron Wolinetz
- Charles Beard
- Rachel Spratt
- Fred Von Stein