Model checking for studying timing in T cell differentiation

Natasa Miskov-Zivanov

University of Pittsburgh, School of Medicine

November 20, 2013 CMACS PI meeting

T cell differentiation

T cell subpopulation ratios are critical for numerous immune and auto-immune pathologies

→ Modeling goals:

- Determine whether known mechanisms are sufficient to explain experimental observations
- Find signaling cascades in T cells critical for cell fate decision
- Suggest additional experiments to identify missing mechanisms
- Identify early markers of the response

Network model

Receptors:

- T cell receptor (TCR)
- Co-stimulation through CD28
- ↗ IL-2 receptor (IL-2R)
- **7** TGFβ receptor (TGFβR)

Transcription factors:

AP-1, NFAT, NFκB, SMAD3, STAT5

Genes:

IL-2, CD25, Foxp3

Other important elements:

- PTEN, PI3K, PIP3, PDK1,
- Akt, mTORC1, mTORC2, TSC1-TSC2, Rheb, S6K1, pS6

Miskov-Zivanov et al., Science Signaling, 2013.

Modeling approach

- States of elements in the signaling network are described using a discrete variables:
 - Element inactive or absent (value 0)
 - Element active or present (values 1, 2,... for different levels of activity)

Interactions between elements:

- Described with logic functions
- Next state is computed from the states of its regulators

Circuit model

Discrete, logical model

- Simulated using Random Order Asynchronous approach
 - Variables updated one at a time in random order
 - **7** Stochastic
- BooleanNet tool used for simulations (http://code.google.com/p/booleannet/)

Miskov-Zivanov et al., Science Signaling, 2013.

Analysis framework with model checking

- Combine BooleanNet simulation tool with a parallel statistical model checker
 - Verification of BLTL properties performed efficiently and automatically on a multicore system (32 cores)
- Statistical model checking treats the verification problem for stochastic systems as a statistical inference problem
 - Uses randomized sampling to generate traces (or simulations) from the system model
 - Uses model checking methods and statistical analysis on those traces

Scenarios

- 1. High antigen dose
- 2. Low antigen dose
- 3. High antigen dose, then removed
- High antigen dose and TGFβ

Scenario 1: High antigen dose trajectory

Trajectory example

value =	ON (1)
value =	OFF (0)

Scenario 1: High antigen dose trajectory

value = OFF(0)

Scenario 1: High antigen dose trajectory

Trajectory example

value = ON (1)	
value = $OFF(0)$	

Magnitude of transient is 0.1-0.15, which means that at maximum 15% trajectories have Foxp3=1 in the same round.

Magnitude of transient is 0.1-0.15, which means that at maximum 15% trajectories have Foxp3=1 in the same round. How often Foxp3 increases to 1? How often it remains 0?

Magnitude of transient is 0.1-0.15, which means that at maximum 15% trajectories have Foxp3=1 in the same round. How often Foxp3 increases to 1? How often it remains 0? Probability of Foxp3 becoming 1 is higher than the peak

Probability of Foxp3 becoming 1 is higher than the peak value in simulations -> Foxp3 transiently increases on a larger number of trajectories.

#	Property	Probability estimate	Success count	Sample size	Elapsed time [s]
P1	F^{29} (FOXP3 == 1); F^{10} (FOXP3 == 1 & F^{19} (FOXP3 == 0))	0.237494	2857	12032	120
P2	$F^{10} G^2 (FOXP3 == 1)$	0.0415313	10970	264160	2704
P3	$F^{10} G^1 (FOXP3 == 1)$	0.119089	830	6976	73
P4	$F^{20} G^9 (FOXP3 == 0 \& IL2 == 1 \& PTEN == 0 \& CD25 == 1 \& PI3K == 1 \& MTORC1 == 1 \& MTORC2 == 1)$	0.996124	256	256	2

Simulation: average element trajectories

Foxp3 increase to 1 often lasts only one round.

#	Property	/	Probability estimate	Success count	Sample size	Elapsed time [s]
P1	F^{29} (FOXP3 == 1); F^{10} (FOXP3 ==	$\& F^{19} (FOXP3 == 0))$	0.237494	2857	12032	120
P2	$F^{10} G^2 (FOXP3 ==$	1)	0.0415313	10970	264160	2704
P3	$F^{10} G^1 (FOXP3 ==$	1)	0.119089	830	6976	73
P4	F ²⁰ G ⁹ (FOXP3 == 0 & IL2 == 1 & PT & PI3K == 1 & MTORC1 == 1 &	EN == 0 & CD25 == 1 & MTORC2 == 1)	0.996124	256	256	2

Simulation: average element trajectories

ume [s]	#
2 120	P1
0 2704	P2
73	P3_
2	P4
	P4

All samples reach same steady state

Scenario 2: Low antigen dose trajectory

value = OFF(0)

Scenario 2: Low antigen dose trajectory

Trajectory example

value =	ON (1)
value =	OFF (0)

Low antigen dose scenario

Magnitude of transient is ~0.8, which means that at maximum 80% trajectories have IL-2=1 in the same round.

Low antigen dose scenario

Low antigen dose scenario

Scenario 3: Antigen removal at rounds 1-12 (T1-T12)

Initial state

Steady-states (attractors)

valu	ie = ON (1)
valu	ie = OFF(0)

	High Ag dose + Ag removal at T6										No removal		
Attractors	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	HD	LD
Foxp3													
IL-2													
PTEN													
TCR													
Ras													
CD25													
PI3K													
Akt													
mTORC1													
mTORC2													
Attractor frequency	40	6	17	3	374	13	127	1	118	126	175	1000	1000

Miskov-Zivanov et al., Science Signaling, 2013.

Antigen removal scenario

Update round

Order of events is important for differentiation

Relative timing on pathways leading to activation (IL-2R) vs. inhibition (mTOR) of Foxp3 critical for fate decision.

mTORC1 is activated early (at round 5) and before CD25 gets activated on trajectories leading to attractor A7

IL-2 and CD25 are often not both activated as early as round 4 in A11.

Frequent nodes

Frequent nodes

Miskov-Zivanov et al., Science Signaling, 2013.

Conclusion

- Model of peripheral T cell differentiation
 - Recapitulates a wide range of experimental observations
 - Circuit analysis reveals key elements and mechanisms for Foxp3 expression
 - Timing is critical for Treg differentiation
- Statistical model checking is an efficient approach for:
 - Studying transient behavior of the system
 - Relationships between elements in time

Acknowledgements

Faeder Lab:

- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh
 - James Faeder

Clarke Lab:

- Computer Science Department, Carnegie Mellon University
 - Edmund Clarke
 - Paolo Zuliani (now at Newcastle University, UK)

Morel and Kane Labs:

- Department of Immunology, School of Medicine, University of Pittsburgh
 - Penelope Morel
 - Lawrence Kane
 - Michael Turner

Funding:

- NSF (Expeditions in Computing)
- 🔻 NIH

Thank you!