Abstractions of Dynamical Systems

Colas Le Guernic

October 28, 2010
Motivations

A typical example:

- a differential equation $\dot{x} = f(x)$, $f : \mathbb{R}^d \rightarrow \mathbb{R}^d$
- an initial point x_0
- a set of “bad” states F
A typical example:

- A differential equation \(\dot{x} = f(x) \), \(f : \mathbb{R}^d \rightarrow \mathbb{R}^d \)
- An initial point \(x_0 \)
- A set of “bad” states \(F \)
A typical example:

- a differential equation $\dot{x} = f(x)$, $f : \mathbb{R}^d \rightarrow \mathbb{R}^d$
- an initial set X_0
- a set of “bad” states F
A typical example:

- a differential inclusion $\dot{x} \in f(x), \quad f : \mathbb{R}^d \to \mathcal{P}(\mathbb{R}^d)$
- an initial set X_0
- a set of “bad” states F
A typical example:

- a differential inclusion \(\dot{x} \in f(x), \ f : \mathbb{R}^d \rightarrow \mathcal{P}(\mathbb{R}^d) \)
- an initial set \(X_0 \)
- a set of “bad” states \(F \)
Hybrid Systems

Outline

Introduction
Motivations
Hybrid Systems
State of the Art
Abstraction
Conclusion

\[\dot{x} \in f_1(x) \]
\[x \in G_{1,2} \]
\[x \leftarrow R_{1,2}(x) \]

\[\dot{x} \in f_2(x) \]
\[x \in G_{2,3} \]
\[x \leftarrow R_{2,3}(x) \]

\[\dot{x} \in f_3(x) \]
\[x \in G_{3,1} \]
\[x \leftarrow R_{3,1}(x) \]

\[\dot{x} \in f_4(x) \]
\[x \in G_{2,4} \]
\[x \leftarrow R_{2,4}(x) \]
A few reflexions on:

- Reachability for some specific classes of functions f.
- Abstractions of arbitrary systems using these specific functions.

Including some ongoing work:

- On Linear Parameter Varying systems with Matthias Althoff and Bruce Krogh.
State of the Art

$f : \mathbb{R}^0 \rightarrow \mathcal{P} \left(\mathbb{R}^0 \right)$

$f(x) = \{1\}$

$f(x) = \mathcal{P}$

$f(x) = A\{x\} \oplus \mathcal{U}$

$f(x) = A\{x\}$

$f : \mathbb{R}^d \rightarrow \mathcal{P} \left(\mathbb{R}^d \right)$

Abstraction

Conclusion
\[f : \mathbb{R}^0 \rightarrow \mathcal{P}(\mathbb{R}^0) \]
\[f(x) = \{1\} \]
Linear Hybrid Automata

- simple continuous dynamics: conjunctions of linear constraints $a \cdot \dot{x} \leq b$, $a \in \mathbb{Z}^n$, $b \in \mathbb{Z}$
- All sets defined by Boolean combinations of linear constraints
\[f(x) = \mathcal{P} \]

Linear Hybrid Automata

- simple continuous dynamics: conjunctions of linear constraints \(a \cdot \dot{x} \leq b, \quad a \in \mathbb{Z}^n, b \in \mathbb{Z} \)
- All sets defined by Boolean combinations of linear constraints

Post: letting time elapse
Linear Hybrid Automata

- simple continuous dynamics: conjunctions of linear constraints $a \cdot \dot{x} \leq b, \quad a \in \mathbb{Z}^n, b \in \mathbb{Z}$
- All sets defined by Boolean combinations of linear constraints

Post$_{c}$: letting time elapse
Post$_{d}$: discrete transition
\[f(x) = P \]

Linear Hybrid Automata

- simple continuous dynamics: conjunctions of linear constraints \(a \cdot \dot{x} \leq b, \quad a \in \mathbb{Z}^n, b \in \mathbb{Z} \)
- All sets defined by Boolean combinations of linear constraints

Post\(_c\): letting time elapse
Post\(_d\): discrete transition
$f(x) = P$

Linear Hybrid Automata

- Simple continuous dynamics: conjunctions of linear constraints $a \cdot \dot{x} \leq b$, $a \in \mathbb{Z}^n$, $b \in \mathbb{Z}$
- All sets defined by Boolean combinations of linear constraints

Post$_c$: letting time elapse
Post$_d$: discrete transition
Linear Hybrid Automata

- simple continuous dynamics: conjunctions of linear constraints $a \cdot \dot{x} \leq b$, $a \in \mathbb{Z}^n, b \in \mathbb{Z}$
- All sets defined by Boolean combinations of linear constraints

Post_c: letting time elapse
Post_d: discrete transition
More expressive than LHA: \(f(x) = 0\{x\} \oplus \mathcal{P} \)

- Continuous dynamics: \(\dot{x} \in A_q\{x\} \oplus \mathcal{U}_q \)
- Switching hyperplanes or Polyhedral guards.
Reachability for LTI:

- Time discretization: \(\dot{x} \in A\{x\} \oplus U \rightarrow x_{k+1} \in \Phi\{x_k\} \oplus V \)
- Computation of the \(N \) first terms of:

\[
\Omega_{n+1} = \Phi \Omega_{n+1} \oplus V
\]
Reachability for LTI:

- Time discretization: $\dot{x} \in A\{x\} \oplus U \rightarrow x_{k+1} \in \Phi\{x_k\} \oplus V$
- Computation of the N first terms of:

$$\Omega_{n+1} = \Phi\Omega_{n+1} \oplus V$$
\(f(x) = A\{x\} \oplus \mathcal{U} \)

Reachability for LTI:

- Time discretization: \(\dot{x} \in A\{x\} \oplus \mathcal{U} \rightarrow x_{k+1} \in \Phi\{x_k\} \oplus \mathcal{V} \)
- Computation of the \(N \) first terms of:

\[
\Omega_{n+1} = \Phi\Omega_{n+1} \oplus \mathcal{V}
\]
Reachability for LTI:

- **Time discretization:** \(\dot{x} \in A\{x\} \oplus U \rightarrow x_{k+1} \in \Phi\{x_k\} \oplus V \)
- **Computation of the first terms of:**

\[
\Omega_{n+1} = \Phi \Omega_{n+1} \oplus V
\]
\[f(x) = A\{x\} \oplus \mathcal{U} \]

Reachability for LTI:

- Time discretization: \(\dot{x} \in A\{x\} \oplus \mathcal{U} \rightarrow x_{k+1} \in \Phi\{x_k\} \oplus \mathcal{V} \)
- Computation of the \(N \) first terms of:

\[
\Omega_{n+1} = \Phi\Omega_{n+1} \oplus \mathcal{V}
\]
Reachability for LTI:

- **Time discretization:** \(\dot{x} \in A\{x\} \oplus \mathcal{U} \implies x_{k+1} \in \Phi\{x_k\} \oplus \mathcal{V} \)
- **Computation of the \(N \) first terms of:**

\[
\Omega_{n+1} = \Phi \Omega_{n+1} \oplus \mathcal{V}
\]
Reachability for LTI:

- Time discretization: \(\dot{x} \in A\{x\} \oplus \mathcal{U} \rightarrow x_{k+1} \in \Phi\{x_k\} \oplus \mathcal{V} \)
- Computation of the \(N \) first terms of:

\[
\Omega_{n+1} = \Phi \Omega_{n+1} \oplus \mathcal{V}
\]
Reachability for LTI:

- Time discretization: \(\dot{x} \in A\{x\} \oplus U \implies x_{k+1} \in \Phi\{x_k\} \oplus V \)

- Computation of the \(N \) first terms of:

\[
\Omega_{n+1} = \Phi \Omega_{n+1} \oplus V
\]
Reachability for LTI:

- Time discretization: $\dot{x} \in A\{x\} \oplus U \longrightarrow x_{k+1} \in \Phi\{x_k\} \oplus V$
- Computation of the N first terms of:

$$\Omega_{n+1} = \Phi\Omega_{n+1} \oplus V$$
\[f(x) = A\{x\} \oplus U \]

Reachability for LTI:

- **Time discretization:** \(\dot{x} \in A\{x\} \oplus U \rightarrow x_{k+1} \in \Phi\{x_k\} \oplus V \)
- **Computation of the \(N \) first terms of:**

\[
\Omega_{n+1} = \Phi \Omega_{n+1} \oplus V
\]
Reachability for LTI:

- **Time discretization:** \(\dot{x} \in A \{x\} \oplus U \longrightarrow x_{k+1} \in \Phi \{x_k\} \oplus V \)
- **Computation of the** \(N \) **first terms of:**

\[
\Omega_{n+1} = \Phi \Omega_{n+1} \oplus V
\]
Reachability for LTI:

- **Time discretization**: \(\dot{x} \in A\{x\} \oplus U \longrightarrow x_{k+1} \in \Phi\{x_k\} \oplus V \)
- **Computation of the** \(N \) **first terms of**:

\[
\Omega_{n+1} = \Phi\Omega_{n+1} \oplus V
\]
\[f(x) = A\{x\} \oplus U \]

Reachability for LTI:

- **Time discretization:** \(\dot{x} \in A\{x\} \oplus U \longrightarrow x_{k+1} \in \Phi\{x_k\} \oplus \mathcal{V} \)
- **Computation of the \(N \) first terms of:**

\[
\Omega_{n+1} = \Phi\Omega_{n+1} \oplus \mathcal{V}
\]
Reachability for LTI:

- Time discretization: $\dot{x} \in A\{x\} \oplus U \rightarrow x_{k+1} \in \Phi\{x_k\} \oplus V$
- Computation of the N first terms of:

$$\Omega_{n+1} = \Phi \Omega_{n+1} \oplus V$$
Reachability for LTI:

- **Time discretization:** \(\dot{x} \in A\{x\} \oplus U \rightarrow x_{k+1} \in \Phi\{x_k\} \oplus V \)
- **Computation of the \(N \) first terms of:**

\[
\Omega_{n+1} = \Phi\Omega_{n+1} \oplus V
\]

\(f(x) = A\{x\} \oplus U \)
Reachability for LTI:

- **Time discretization:** \(\dot{x} \in A\{x\} \oplus U \longrightarrow x_{k+1} \in \Phi\{x_k\} \oplus V \)
- **Computation of the \(N \) first terms of:**

\[
\Omega_{n+1} = \Phi \Omega_{n+1} \oplus V
\]
Reachability for LTI:

- Time discretization: \(\dot{x} \in A\{x\} \oplus U \longrightarrow x_{k+1} \in \Phi\{x_k\} \oplus V \)
- Computation of the \(N \) first terms of:
 \[
 \Omega_{n+1} = \Phi \Omega_{n+1} \oplus V
 \]

\(\Omega_{n-1} \) may have more than \(\frac{(2n)^{d-1}}{\sqrt{d}} \) vertices.
Reachability for LTI:

- Time discretization: \(\dot{x} \in A\{x\} \oplus U \longrightarrow x_{k+1} \in \Phi\{x_k\} \oplus V \)
- Computation of the \(N \) first terms of:

\[
\Omega_{n+1} = \Phi\Omega_{n+1} \oplus V
\]
Reachability for LTI:

Computation of the first terms of:

\[\Omega_{n+1} = \alpha(\delta(\Omega_n) \oplus V) \]

- Time discretization: \(x \in A\{x\} \oplus U \rightarrow x_{k+1} \in \Phi\{x_k\} \oplus V \)

\[f(x) = A\{x\} \oplus U \]

Table

<table>
<thead>
<tr>
<th>Introduction</th>
<th>State of the Art</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x) = A{x} \oplus U)</td>
<td>(f(x) : \mathbb{R}^0 \rightarrow \mathbb{P}(\mathbb{R}^0))</td>
<td>(f(x) = {1})</td>
</tr>
</tbody>
</table>
Reachability for LTI:

- **Time discretization:** \(\dot{x} \in A\{x\} \oplus U \rightarrow x_{k+1} \in \Phi\{x_k\} \oplus V \)
- **Computation of the \(N \) first terms of:**

\[
\overline{\Omega}_{n+1} = \alpha(\Phi \gamma(\overline{\Omega}_{n+1}) \oplus V)
\]
Reachability for LTI:

- **Time discretization:** \(\dot{x} \in A\{x\} \oplus U \rightarrow x_{k+1} \in \Phi\{x_k\} \oplus V \)
- **Computation of the** \(N \) **first terms of:**

\[
\Omega_{n+1} = \alpha(\Phi \gamma(\Omega_{n+1}) \oplus V)
\]
Reachability for LTI:

- Time discretization: \(\dot{x} \in A\{x\} \oplus U \rightarrow x_{k+1} \in \Phi\{x_k\} \oplus V \)
- Computation of the first terms of:

\[
\Omega_{n+1} = \alpha(\Phi \gamma(\Omega_{n+1}) \oplus V)
\]
Reachability for LTI:

- Time discretization: \(\dot{x} \in A\{x\} \oplus U \rightarrow x_{k+1} \in \Phi\{x_k\} \oplus V \)
- Computation of the first terms of:

\[
\Omega_{n+1} = \alpha(\Phi \gamma(\Omega_{n+1}) \oplus V)
\]
\[f(x) = A\{x\} \oplus \mathcal{U} \]

Reachability for LTI:

- **Time discretization:** \(\dot{x} \in A\{x\} \oplus \mathcal{U} \longrightarrow x_{k+1} \in \Phi\{x_k\} \oplus \mathcal{V} \)
- **Computation of the** \(N \) **first terms of:**

\[
\overline{\Omega}_{n+1} = \alpha(\Phi \gamma(\overline{\Omega}_{n+1}) \oplus \mathcal{V})
\]
\[f(x) = A\{x\} \oplus \mathcal{U} \]

Reachability for LTI:

- Time discretization: \(\dot{x} \in A\{x\} \oplus \mathcal{U} \longrightarrow x_{k+1} \in \Phi\{x_k\} \oplus \mathcal{V} \)
- Computation of the \(N \) first terms of:

\[
\bar{\Omega}_{n+1} = \alpha(\Phi \gamma(\bar{\Omega}_{n+1}) \oplus \mathcal{V})
\]

\[\alpha(\Phi \gamma(\) \oplus \) \]
Reachability for LTI:

- Time discretization: \(\dot{x} \in A\{x\} \oplus U \rightarrow x_{k+1} \in \Phi\{x_k\} \oplus V \)
- Computation of the \(N \) first terms of:

\[
\Omega_{n+1} = \alpha(\Phi \gamma(\Omega_{n+1}) \oplus V)
\]
\[f(x) = A\{x\} \oplus U \]

Reachability for LTI:

- **Time discretization:** \(\dot{x} \in A\{x\} \oplus U \longrightarrow x_{k+1} \in \Phi\{x_k\} \oplus V \)
- **Computation of the first terms of:**

\[\overline{\Omega}_{n+1} = \alpha(\Phi \gamma(\overline{\Omega}_{n+1}) \oplus V) \]
Reachability for LTI:

- Time discretization: \(\dot{x} \in A\{x\} \oplus \mathcal{U} \rightarrow x_{k+1} \in \Phi\{x_k\} \oplus \mathcal{V} \)
- Computation of the first \(N \) terms of:

\[
\overline{\Omega}_{n+1} = \alpha(\Phi \gamma(\overline{\Omega}_{n+1}) \oplus \mathcal{V})
\]
Reachability for LTI:

- Time discretization: $\dot{x} \in A\{x\} \oplus U \rightarrow x_{k+1} \in \Phi\{x_k\} \oplus V$
- Computation of the N first terms of:

$$\overline{\Omega}_{n+1} = \alpha(\Phi \gamma(\overline{\Omega}_{n+1}) \oplus V)$$
Reachability for LTI:

- **Time discretization:** \(\dot{x} \in A\{x\} \oplus U \rightarrow x_{k+1} \in \Phi\{x_k\} \oplus V \)
- **Computation of the \(N \) first terms of:**

\[
\overline{\Omega}_{n+1} = \alpha(\Phi \gamma(\overline{\Omega}_{n+1}) \oplus V)
\]
$f(x) = A\{x\} \oplus \mathcal{U}$

Reachability for LTI:

- Time discretization: $\dot{x} \in A\{x\} \oplus \mathcal{U} \rightarrow x_{k+1} \in \Phi\{x_k\} \oplus \mathcal{V}$
- Computation of the N first terms of:

\[
\overline{\Omega}_{n+1} = \alpha(\Phi \gamma(\overline{\Omega}_{n+1}) \oplus \mathcal{V})
\]

\[
\ldots
\]
Reachability for LTI:

- Time discretization: \(\dot{x} \in A\{x\} \oplus \mathcal{U} \rightarrow x_{k+1} \in \Phi\{x_k\} \oplus \mathcal{V} \)
- Computation of the \(N \) first terms of:

\[
\overline{\Omega}_{n+1} = \alpha(\Phi \gamma(\overline{\Omega}_{n+1}) \oplus \mathcal{V})
\]

The approximation error can be exponential in the number of steps! \(\rightarrow \) wrapping effect
Reachability for LTI:

- Time discretization: \(\dot{x} \in A\{x\} \oplus U \longrightarrow x_{k+1} \in \Phi\{x_k\} \oplus V \)
- Computation of the \(N \) first terms of:

\[
\Omega_{n+1} = \alpha(\Phi \gamma(\Omega_{n+1}) \oplus V)
\]

The approximation error can be exponential in the number of steps! \(\longrightarrow \) wrapping effect

\[
T : \mathcal{X} \mapsto \Phi \mathcal{X} \oplus V
\]

\[
(\alpha \circ T \circ \gamma)^n = \alpha \circ T^n \circ \gamma
\]

\[
(\alpha \circ T \circ \gamma) \circ \alpha = \alpha \circ T
\]
\[f(x) = A\{x\} \oplus \mathcal{U} \]

\[\Omega_n = \Phi^n \Omega_0 \oplus \bigoplus_{i=0}^{n-1} \Phi^i \mathcal{V} \]
\[f(x) = A\{x\} \oplus U \]

\[\Omega_n = \Phi^n \Omega_0 \oplus \bigoplus_{i=0}^{n-1} \Phi_i \nu \]

\[A_0 = \Omega_0 \quad \quad A_{n+1} = \Phi A_n \]

\[\nu_0 = \nu \quad \quad \nu_{n+1} = \Phi \nu_n \]

\[S_0 = \{0\} \quad \quad S_{n+1} = S_n \oplus \nu_n \]

Then: \[\Omega_n = A_n \oplus S_n \]

- \(A_i \) and \(\nu_i \) have a constant representation size.
- We can exploit redundancies of \(S_i \) (zonotopes, support functions).
\[f(x) = A\{x\} \oplus U \]

\[\Omega_n = \Phi^n \Omega_0 \oplus \bigoplus_{i=0}^{n-1} \Phi^i \nu \]

\[A_0 = \Omega_0 \quad A_{n+1} = \Phi A_n \]
\[\nu_0 = \nu \quad \nu_{n+1} = \Phi \nu_n \]
\[S_0 = \{0\} \quad S_{n+1} = S_n \oplus \nu_n \]

Approximations can still be interesting:

- We are only interested in one individual \(\Omega_i \).
- We want to use a tool that can not exploit the redundancies.
\[f(x) = A\{x\} \oplus \mathcal{U} \]

\[\Omega_n = \Phi^n \Omega_0 \oplus \bigoplus_{i=0}^{n-1} \Phi^i \mathcal{V} \]

\[\mathcal{A}_0 = \Omega_0 \]
\[\mathcal{A}_{n+1} = \Phi \mathcal{A}_n \]
\[\mathcal{V}_0 = \mathcal{V} \]
\[\mathcal{V}_{n+1} = \Phi \mathcal{V}_n \]
\[\overline{S}_0 = \{0\} \]
\[\overline{S}_{n+1} = \alpha(\gamma(\overline{S}_n) \oplus \mathcal{V}_n) \]

Approximations can still be interesting:
- We are only interested in one individual \(\Omega_i \).
- We want to use a tool that can not exploit the redundancies.
\[f(x) = A\{x\} \oplus \mathcal{U} \]

\[\Omega_n = \Phi^n \Omega_0 \oplus \bigoplus_{i=0}^{n-1} \Phi^i \mathcal{V} \]

\[A_0 = \Omega_0 \quad A_{n+1} = \Phi A_n \]
\[\mathcal{V}_0 = \mathcal{V} \quad \mathcal{V}_{n+1} = \Phi \mathcal{V}_n \]
\[\overline{S}_0 = \{0\} \quad \overline{S}_{n+1} = \alpha(\gamma(\overline{S}_n) \oplus \mathcal{V}_n) \]

\[T : (\mathcal{X}, \mathcal{Y}, \mathcal{Z}) \mapsto (\Phi \mathcal{X}, \Phi \mathcal{Y}, \mathcal{Z} \oplus \mathcal{Y}) \]
\[(\alpha \circ T \circ \gamma)^n = \alpha \circ T^n \circ \gamma \]
\[\alpha(\gamma(\alpha(\mathcal{Z})) \oplus \mathcal{Y}) = \alpha(\mathcal{Z} \oplus \mathcal{Y}) \]
$f(x) = A\{x\} \oplus \mathcal{U}$
\[f(x) = A\{x\} \oplus \mathcal{U} \]
\[f(x) = \{ Ax \mid A \in \mathcal{A} \} \]

More expressive than \(f(x) = A\{x\} \oplus \mathcal{U} \) (in smaller dimension):

\[f(x) = \left\{ \begin{pmatrix} A & u \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ 1 \end{pmatrix} \mid u \in \mathcal{U} \right\} \]

- Time discretization: \(\dot{x} \in \mathcal{A}x \longrightarrow x_{n+1} \in \mathcal{M}x_n \)
- Use of set representations in the space of Matrices.
\[f(x) = \{ Ax \mid A \in \mathcal{A} \} \]

- 8 variables
- 3 discrete locations
\[f(x) = \{Ax \mid A \in \mathcal{A}\} \]

- 8 variables
- 3 discrete locations
If we want to use similar techniques:

- Adapt integration schemes:

\[\mathcal{X} \mapsto \mathcal{X} \oplus \delta f(\mathcal{X}) \oplus \mathcal{E} \]

- Abstract
Abstraction

\[f : \mathbb{R}^0 \rightarrow \mathcal{P}(\mathbb{R}^0) \]

\[f(x) = \{1\} \]
\[\tilde{f}(x) = \mathcal{P} \]
\[\hat{f}(x) = A\{x\} \oplus \mathcal{U} \]
\[\bar{f}(x) = A\{x\} \]
Rectangular partition.

We need to know if $f_i(G) \cap \mathbb{R}^+$ is empty.
\(\bar{f} : \mathbb{R}^0 \rightarrow \mathcal{P}(\mathbb{R}^0) \)

Smooth partition.

- Sign conditions on a set of functions and their derivatives.
- No transition from \((x > 0, \dot{x} > 0)\) to \((x < 0, \dot{x} > 0)\)

We need to check emptiness of the cells.
\[\bar{f}(x) = \{1\} \]

Timed automata.

- Partition of the state space in slices
- Clocks measure time to get from one slice to the other
- We need to know upper and lower bounds for \(f_i(S) \).
- Easier when Lyapunov functions are availables
\[\bar{f}(x) = P \]

LHA

- Polyhedral partition
- For each cell \(C \) of the partition, we need to know \(f(C) \)
\[\tilde{f}(x) = \mathcal{P} \]

LHA

- Polyhedral partition
- For each cell \(C \) of the partition, we need to know \(f(C) \)

![Diagram showing LHA]
\(f(x) = \mathcal{P} \)

LHA

- Polyhedral partition
- For each cell \(C \) of the partition, we need to know \(f(C) \)

![Diagram showing Polyhedral partition with initial states, final states, and reachable final states.](image)
\[\tilde{f}(x) = \mathcal{P} \]

- **LHA**
 - Polyhedral partition
 - For each cell \(C \) of the partition, we need to know \(f(C) \)

\[\begin{align*}
\tilde{f}(x) &= \{1\} \\
\tilde{f}(x) &= \mathcal{P} \\
\tilde{f}(x) &= A\{x\} \oplus U \\
\tilde{f}(x) &= A\{x\}
\end{align*} \]

- Introduction
- State of the Art
- Abstraction
 \(\bar{f} : \mathbb{R}^0 \rightarrow \mathcal{P}(\mathbb{R}^0) \)
 \(\bar{f}(x) = \{1\} \)
 \(\bar{f}(x) = \mathcal{P} \)
 \(\bar{f}(x) = A\{x\} \oplus U \)
 \(\bar{f}(x) = A\{x\} \)
- Conclusion

Colas Le Guernic
\[
\bar{f}(x) = A\{x\} \oplus U
\]

For each cell \(C \) of the partition:

- Choose linearization \(A \)
- Compute \(U = \{ y - Ax \mid x \in C, y \in f(x) \} \)

We want \(U \) to be as small as possible, how do we choose \(A \)?
\[\bar{f}(x) = A\{x\} \oplus \mathcal{U} \]

For each cell \(\mathcal{C} \) of the partition:

- Choose linearization \(A \)
- Compute \(\mathcal{U} = \{y - Ax \mid x \in \mathcal{C}, y \in f(x)\} \)

We want \(\mathcal{U} \) to be as small as possible, how do we choose \(A \)?

We do not really know...
\(\bar{f}(x) = A\{x\} \oplus U \)

For each cell \(C \) of the partition:

- Choose linearization \(A \)
- Compute \(U = \{ y - Ax \mid x \in C, y \in f(x) \} \)

We want \(U \) to be as small as possible, how do we choose \(A \)?

We do not really know...

One guess is to take the Jacobian at the center of the cell.
\[f(x) = \{ Ax \mid A \in A \} \]
\(\tilde{f}(x) = \{Ax \mid A \in \mathcal{A}\} \)

One guess is to take the Jacobians at every point of the cell.
\[\tilde{f}(x) = \{ Ax \mid A \in A \} \]

One guess is to take the Jacobians at every point of the cell. If we find a subset of variables such that:

- \(f \) is linear in these variables
- no product of two of these variables appear in \(f \)

We do not need to partition along these variables.
Choosing the right abstraction is rarely easy.

- choice of the partition
- choice of the class of abstraction
- choice of the abstraction in this class
Choosing the right abstraction is rarely easy.

- choice of the partition
- choice of the class of abstraction
- choice of the abstraction in this class
- modifying the number of continuous variables
- combining different classes of abstractions
Thank you