Statistical Model Checking

Paolo Zuliani

Joint work with
Edmund M. Clarke, James R. Faeder*,
Haijun Gong, Anvesh Komuravelli,
André Platzer, Ying-Chih Wang

Computer Science Department, CMU
*Department of Computational Biology, Pitt
Problem

Verification of Stochastic Systems

- Uncertainties in
 - the system environment,
 - modeling a fault,
 - biological signaling pathways,
 - circuit fabrication (process variability)

- Transient property specification:
 - “what is the probability that the system shuts down within 0.1 ms”?

- If $\Phi = \text{“system shuts down within 0.1 ms”}$
 $\text{Prob}(\Phi) = ?$
Equivalently

- A biased coin (Bernoulli random variable):
 - Prob (Head) = \(p \) Prob (Tail) = \(1-p \)
 - \(p \) is unknown

- Question: What is \(p \)?

- A solution: flip the coin a number of times, collect the outcomes, and use a statistical estimation technique.
Motivation

- **State Space Exploration** infeasible for large systems
 - Symbolic MC with OBDDs scales to 10^{300} states
 - Scalability depends on the structure of the system
- **Pros: Simulation** is feasible for **many more** systems
 - Often easier to simulate a complex system than to build the transition relation for it
- **Pros: Easier to parallelize**
- **Cons: Answers may be wrong**
 - But error probability can be bounded
- **Cons: Simulation is incomplete**
Key idea

- System behavior w.r.t. a (fixed) property Φ can be modeled by a Bernoulli random variable of parameter p:
 - System satisfies Φ with (unknown) probability p

- Question: What is p?

- Draw a sample of system simulations and use:
 - Statistical estimation: returns “p in interval (a,b)” with high probability
Bounded Linear Temporal Logic

- Bounded Linear Temporal Logic (BLTL): Extension of LTL with time bounds on temporal operators.

- Let $\sigma = (s_0, t_0), (s_1, t_1), \ldots$ be an execution of the model
 - along states s_0, s_1, \ldots
 - the system stays in state s_i for time t_i
 - divergence of time: $\Sigma_i t_i$ diverges (i.e., non-zeno)

- σ^i: Execution trace starting at state i.

- A model for simulation traces (e.g. Stateflow/Simulink)
Semantics of BLTL

The semantics of BLTL for a trace σ^k:

- $\sigma^k \models ap$ iff atomic proposition ap true in state s_k
- $\sigma^k \models \Phi_1 \lor \Phi_2$ iff $\sigma^k \models \Phi_1$ or $\sigma^k \models \Phi_2$
- $\sigma^k \models \neg \Phi$ iff $\sigma^k \models \Phi$ does not hold
- $\sigma^k \models \Phi_1 \mathcal{U}^t \Phi_2$ iff there exists natural i such that
 1) $\sigma^{k+i} \models \Phi_2$
 2) $\Sigma_{j<i} t_{k+j} \leq t$
 3) for each $0 \leq j < i$, $\sigma^{k+j} \models \Phi_1$

"within time t, Φ_2 will be true and Φ_1 will hold until then"

- In particular, $\mathcal{F}^t \Phi = true \mathcal{U}^t \Phi$, $\mathcal{G}^t \Phi = \neg \mathcal{F}^t \neg \Phi$
Simulation traces are finite: is $\sigma \models \Phi$ well defined?

Definition: The time bound of Φ:

- $(ap) = 0$
- $\#(\neg \Phi) = \#(\Phi)$
- $\#(\Phi_1 \lor \Phi_2) = \max(\#(\Phi_1), \#(\Phi_2))$
- $\#(\Phi_1 \mathcal{U}^t \Phi_2) = t + \max(\#(\Phi_1), \#(\Phi_2))$

Lemma: “Bounded simulations suffice”

Let Φ be a BLTL property, and $k \geq 0$. For any two infinite traces ρ, σ such that ρ^k and σ^k “equal up to time $\#(\Phi)$” we have

$$\rho^k \models \Phi \iff \sigma^k \models \Phi$$
Three ingredients:

1. **Prior distribution**
 - Models our initial (a priori) uncertainty/belief about parameters (what is $P(\theta)$?)

2. **Likelihood function**
 - Describes the distribution of data (e.g., a sequence of heads/tails), given a specific parameter value

3. **Bayes Theorem**
 - Revises uncertainty upon experimental data - compute $P(\theta \mid \text{data})$
Sequential Bayesian Statistical MC

- Suppose \mathcal{M} satisfies ϕ with (unknown) probability p
 - p is given by a random variable (defined on $[0,1]$) with density g
 - g represents the prior belief that \mathcal{M} satisfies ϕ
- Generate independent and identically distributed (iid) sample (simulation) traces.
- x_i: the i^{th} sample trace σ satisfies ϕ
 - $x_i = 1$ iff $\sigma_i \models \phi$
 - $x_i = 0$ iff $\sigma_i \not\models \phi$
- Then, x_i will be a Bernoulli trial with conditional density (likelihood function)
 \[
 f(x_i/u) = u^x(1 - u)^{1-x_i}
 \]
Beta Prior

- Prior g is Beta of parameters $\alpha>0, \beta>0$

\[g(u, \alpha, \beta) = \frac{1}{B(\alpha, \beta)} u^{\alpha-1} (1 - u)^{\beta-1} \quad \forall u \in [0, 1] \]

\[B(\alpha, \beta) = \int_0^1 t^{\alpha-1} (1 - t)^{\beta-1} \, dt \]

- $F(\cdot, \cdot)(\cdot)$ is the Beta distribution function (i.e., $\text{Prob}(X \leq u)$)

\[F(\alpha, \beta)(u) = \int_0^u g(t, \alpha, \beta) \, dt \]
Bayesian Interval Estimation - I

- Estimating the (unknown) probability \(p \) that "system \(\models \Phi \)"
- Recall: system is modeled as a Bernoulli of parameter \(p \)
- **Bayes’ Theorem** (for conditional iid Bernoulli samples)

\[
f(u \mid x_1, \ldots, x_n) = \frac{f(x_1 \mid u) \cdots f(x_n \mid u)g(u)}{\int_0^1 f(x_1 \mid v) \cdots f(x_n \mid v)g(v) \, dv}
\]

- We thus have the **posterior distribution**
- So we can use the **mean of the posterior** to estimate \(p \)
 - mean is a posterior Bayes estimator for \(p \) (it minimizes the integrated risk over the parameter space, under a quadratic loss)
By integrating the posterior we get Bayesian intervals for p

Fix a coverage $\frac{1}{2} < c < 1$. Any interval (t_0, t_1) such that

$$\int_{t_0}^{t_1} f(u \mid x_1, \ldots, x_n) \, du = c$$

is called a 100c percent Bayesian Interval Estimate of p

An optimal interval minimizes $t_1 - t_0$: difficult in general

Our approach:
- fix a half-interval width δ
- Continue sampling until the posterior probability of an interval of width 2δ containing the posterior mean exceeds coverage c
Computing the posterior probability of an interval is easy

Suppose \(n \) Bernoulli samples (with \(x \leq n \) successes) and prior Beta(\(\alpha, \beta \))

\[
P(t_0 < p < t_1 | x_1, \ldots, x_n) = \int_{t_0}^{t_1} f(u | x_1, \ldots, x_n) \, du
\]

\[
= F(x+\alpha, n-x+\beta)(t_1) - F(x+\alpha, n-x+\beta)(t_0)
\]

Efficient numerical implementations (Matlab, GSL, etc)
Bayesian Interval Estimation - IV

prior is beta(\(\alpha=4,\beta=5\))

posterior density after 1000 samples and 900 “successes” is beta(\(\alpha=904,\beta=105\))

posterior mean = 0.8959
Bayesian Interval Estimation - V

Require: BLTL property Φ, interval-width δ, coverage c, prior beta parameters α, β

$n := 0$ \hspace{1cm} \{number of traces drawn so far\}

$x := 0$ \hspace{1cm} \{number of traces satisfying so far\}

repeat

$\sigma :=$ draw a sample trace of the system (iid)

$n := n + 1$

if $\sigma \models \Phi$ then

$x := x + 1$

endif

mean $= (x + \alpha)/(n + \alpha + \beta)$

$(t_0, t_1) = (\text{mean} - \delta, \text{mean} + \delta)$

$I := \text{PosteriorProbability} (t_0, t_1, n, x, \alpha, \beta)$

until $(I > c)$

return (t_0, t_1), mean
Recall the algorithm outputs the interval \((t_0, t_1)\).

Define the null hypothesis

\[H_0: t_0 < p < t_1 \]

Theorem (Error bound). When the Bayesian estimation algorithm (using coverage \(\frac{1}{2} < c < 1\)) stops – we have

\[
\text{Prob ("accept } H_0 \text{" | } H_1) \leq \frac{(1/c - 1)\pi_0}{1-\pi_0}
\]

\[
\text{Prob ("reject } H_0 \text{" | } H_0) \leq \frac{(1/c - 1)\pi_0}{1-\pi_0}
\]

\(\pi_0\) is the prior probability of \(H_0\).
Example: Fuel Control System

The Stateflow/Simulink model
Fuel Control System

- Ratio between **air mass flow** rate and **fuel mass flow** rate
 - Stoichiometric ratio is 14.6

- Senses amount of oxygen in exhaust gas, pressure, engine speed and throttle to **compute correct fuel rate**.
 - Single sensor faults are compensated by switching to a higher oxygen content mixture
 - Multiple sensor faults force engine shutdown

- Probabilistic behavior because of **random faults**
 - In the EGO (oxygen), pressure and speed sensors
 - Faults modeled by three independent Poisson processes
 - We did not change the speed or throttle inputs
Verification

- We want to estimate the probability that
 \[M, \text{FaultRate} \models \neg F^{100} G^1(\text{FuelFlowRate} = 0) \]
- “It is not the case that within 100 seconds, \text{FuelFlowRate} is zero for 1 second”
- We use various values of \text{FaultRate} for each of the three sensors in the model
- Uniform prior
Verification

- Half-width $\delta = 0.01$
- Several values of coverage probability c
- Posterior mean: add/subtract δ to get Bayesian interval

<table>
<thead>
<tr>
<th>Fault rates</th>
<th>Interval coverage c</th>
</tr>
</thead>
<tbody>
<tr>
<td>[3 7 8]</td>
<td>.3603 .3559 .3558 .3563</td>
</tr>
<tr>
<td>[10 8 9]</td>
<td>.8534 .8518 .8528 .8534</td>
</tr>
<tr>
<td>[20 10 20]</td>
<td>.9764 .9784 .9840 .9779</td>
</tr>
<tr>
<td>[30 30 30]</td>
<td>.9913 .9933 .9956 .9971</td>
</tr>
</tbody>
</table>
Verification

- **Number of samples**
- **Comparison with Chernoff-Hoeffding bound**

\[
Pr \left(|X - p| \geq \delta \right) \leq \exp(-2n\delta^2)
\]

where \(X = 1/n \sum X_i \), \(E[X_i] = p \)

Fault rates

<table>
<thead>
<tr>
<th>Fault rates</th>
<th>[3 7 8]</th>
<th>[10 8 9]</th>
<th>[20 10 20]</th>
<th>[30 30 30]</th>
<th>Chernoff bound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6,234</td>
<td>3,381</td>
<td>592</td>
<td>113</td>
<td>11,513</td>
</tr>
<tr>
<td></td>
<td>8,802</td>
<td>4,844</td>
<td>786</td>
<td>148</td>
<td>14,979</td>
</tr>
<tr>
<td></td>
<td>15,205</td>
<td>8,331</td>
<td>1,121</td>
<td>227</td>
<td>23,026</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,583</td>
<td></td>
<td>34,539</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interval coverage</th>
<th>.9</th>
<th>.95</th>
<th>.99</th>
<th>.999</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6,234</td>
<td>8,802</td>
<td>15,205</td>
<td>24,830</td>
</tr>
<tr>
<td></td>
<td>3,381</td>
<td>4,844</td>
<td>8,331</td>
<td>13,569</td>
</tr>
<tr>
<td></td>
<td>592</td>
<td>786</td>
<td>1,121</td>
<td>2,583</td>
</tr>
<tr>
<td></td>
<td>113</td>
<td>148</td>
<td>227</td>
<td>341</td>
</tr>
</tbody>
</table>

about 17hrs on 2.4GHz Pentium 4
Example: OP Amplifier

Process variability: uncertainties in the fabrication process
OP amp: BLTL Specifications

- Properties are measured directly from simulation traces
- Predicates over simulation traces
 - e.g. Swing Range: \(\text{Max}(V_{\text{out}}) > 1.0\text{V AND Min}(V_{\text{out}}) < 0.2\text{V} \)
- Using BLTL specifications
 - In most cases, can be translated directly from definitions
 - e.g. Swing Range:
 - \(F^{[100\mu s]}(V_{\text{out}} < 0.2) \text{ AND } F^{[100\mu s]}(V_{\text{out}} > 1.0) \)
 - “within 100\(\mu\)s \(V_{\text{out}}\) will eventually be greater than 1V and smaller than 0.2V”
 - 100\(\mu\)s: end time of transient simulation
 - Note: unit in \textit{bound} is only for readability
OP amp: BLTL Specifications

<table>
<thead>
<tr>
<th>Specifications</th>
<th>BLTL Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Input Offset Voltage</td>
<td>$< 1 \text{ mV}$</td>
</tr>
<tr>
<td></td>
<td>$F^{[100\mu s]}(V_{out} = .6)$ AND $G^{[100\mu s]}((V_{out} = .6) \rightarrow (</td>
</tr>
<tr>
<td>2 Output Swing Range</td>
<td>$.2 \text{ V to } 1.0 \text{ V}$</td>
</tr>
<tr>
<td></td>
<td>$F^{[100\mu s]}(V_{out} < .2)$ AND $F^{[100\mu s]}(V_{out} > 1.0)$</td>
</tr>
<tr>
<td>3 Slew Rate</td>
<td>$> 25 \text{ V/}\mu\text{Sec}$</td>
</tr>
<tr>
<td></td>
<td>$G^{[100\mu s]}((V_{out} > 1.0 \text{ AND } V_{in} > .65) \rightarrow F^{[0.032\mu s]}(V_{out} < .2)) \text{ AND }$</td>
</tr>
<tr>
<td></td>
<td>$(V_{out} < .2 \text{ AND } V_{in} < .55) \rightarrow F^{[0.032\mu s]}(V_{out} < 1.0))$</td>
</tr>
</tbody>
</table>

More properties and experiments in our ASP-DAC 2011 paper
- p is small (say 10^{-9})
- A 99% (approximate) confidence interval of relative accuracy δ needs about
 \[
 \frac{(1-p)}{p\delta^2}
 \] samples
- Examples:
 - $p = 10^{-9}$ and $\delta = 10^{-2}$ (ie, 1% accuracy) we need about 10^{13} samples!!
 - Bayesian estimation requires about 6×10^6 samples with $p=10^{-4}$ and $\delta = 10^{-1}$
The fundamental **Importance Sampling** identity

\[
p_t = E[I(X \geq t)]
\]

\[
= \int I(x \geq t) f(x) \, dx
\]

\[
= \int I(x \geq t) \frac{f(x)}{f_*(x)} f_*(x) \, dx
\]

\[
= \int I(x \geq t) W(x) f_*(x) \, dx
\]

\[
= E_*[I(X \geq t)W(X)]
\]
Estimate \(p_t = E[X > t] \). A sample \(X_1, \ldots, X_K \) iid as \(X \)

\[
\hat{p}_t = \frac{1}{K} \sum_{i=1}^{K} I(X_i \geq t) = \frac{k_t}{K}, \quad X_i \sim f
\]

Define a biasing density \(f_* \)

\[
\hat{p}_t = \frac{1}{K} \sum_{i=1}^{K} I(X_i \geq t) W(X_i), \quad X_i \sim f_*
\]

where \(W(x) = f(x)/f_*(x) \) is the likelihood ratio
Importance Sampling: Toy Example

- Suppose X is Poisson with parameter λ
 - $\text{Prob}(X_t = k) = (1/k!)(\lambda t)^k \exp(-\lambda t)$
- Then $\text{Prob}(X_t \geq 1) = 1 - \exp(-\lambda t)$
- Say $t = 100$ and $\lambda = 1/3 \times 10^{-11}$
 - $\rho_t = \text{Prob}(X_t \geq 1) \approx 3.333 \times 10^{-10}$
 - Rare event!
Importance Sampling: Toy Example

- Define the **biasing density** a Poisson with parameter μ much larger than λ.

- The likelihood ratio is

$$W(k) = (\lambda t)^k (\mu t)^{-k} \exp(-\mu t) \exp(\lambda t) = (\lambda/\mu)^k \exp(t(\mu-\lambda))$$

- Draw N samples $k_1...k_N$ from the biasing density

- **Importance sampling estimate** is

$$e_t = 1/N \sum_i I(k_i \geq 1) W(k_i)$$
Importance Sampling: Toy Example

- With $N = 100$ samples and $\mu = 1/90$ we get an estimate

 $$e_t = 3.2808 \times 10^{-10}$$

- Recall the “unbiased” system has $\lambda = 1/3 \times 10^{-11}$

- The (unknown) true probability is about 3.333×10^{-10}

- Try standard MC estimation …
- Tackling the incompleteness of simulation
- **Theorem** (Undecidability of image computation)

Platzer and Clarke, HSCC 2007
Bad news, but …

Theorem. (Platzer and Clarke, 07)
If \(\text{Prob}(\|\varphi'\|_\infty > b) \to 0 \) when \(b \to \infty \), then image computation can be performed with arbitrarily high probability by evaluating \(\varphi \) on sufficiently dense grid.

Idea:
- given a simulation trace, “compute the probability that we have missed a (bad) state between two sample points”
- Bound the overall error probability *a priori* (combining bounds on \(\|\varphi'\|_\infty \) and the statistical test/estimation)
Thank You!