Workshops on Computational Modeling of Complex Systems

Flavio Fenton and Nancy Griffeth
March 28, 2011
Workshop Objectives

- Disseminate project work among promising students
- Encourage enthusiasm for research and modeling complex systems
- Find good prospects for REU and graduate programs
- Encourage under-represented minorities to enter STEM fields
- Encourage inter-disciplinary work
- Develop course materials
Outline

- Recruiting and Admission: Nancy
- 2011 Workshop on Atrial Fibrillation
 - Week 1: Flavio
 - Weeks 2-3 and Evaluation: Nancy
- Student Results and Paper: Flavio
- 2012 Workshop on Cellular Signaling Pathways
2011 Workshop: Recruiting and Admission

- Target Colleges: Lehman, Hunter, Brooklyn, Queens, CCNY
- Applicants:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Brooklyn</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Hunter</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Lehman</td>
<td>11</td>
<td>6</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Queens</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Stony Brook</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>15</td>
<td>20</td>
<td>15</td>
</tr>
</tbody>
</table>
2011 Workshop: Student Characteristics

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>Number</th>
<th>Major</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>African-American</td>
<td>3</td>
<td>Math</td>
<td>6</td>
</tr>
<tr>
<td>Woman</td>
<td>5</td>
<td>Bio</td>
<td>4</td>
</tr>
<tr>
<td>Hispanic</td>
<td>3</td>
<td>CS</td>
<td>7</td>
</tr>
</tbody>
</table>
Workshop Outline

- Biology background: Week 1 (Flavio Fenton, Rupinder Singh)
- Mathematical and Programming background: Week 2
- Student Project: Week 3
Week 2

- Mathematical preliminaries
 - Modeling exercise and differential equations – Terri Grosso
 - Numerical Integration – Kai Zhao
 - Introduction to CUDA – Joshua Rogers
 - The 4V Model and Code – Ezio Bartocci
Week 3

- Students worked in 5 groups (same as week 2)
- Flavio assigned parameters to each group
- Using Ezio’s code on various CUDA machines*, students generated data
- Flavio reviewed the work via Skype

*Thanks to Brian Murphy and NVIDIA
Week 1

- Complex Systems and Biological Background
 - CMACS and its goals
 - Chaos and complex systems
 - Experimental exercises with oscillators
 - Relation between oscillators and cardiac cells
 - Mathematical modeling of cardiac cells
 - Cardiac arrhythmias and its study by computer simulations
Week 1

- Saline Oscillator
Week 1

Chemical Oscillators

Briggs-Rauscher and Belousov-Zhabotinsky
Week 1

- Chemical Oscillators
 Briggs-Rauscher and Belousov-Zhabotinsky
Students Results
Teaching cardiac electrophysiology modeling to undergraduate students: Lab exercises and GPU programming for the study of arrhythmias and spiral wave dynamics

Ezio Bartocci\(^1\), Rupinder Singh\(^2\), Frederick B. von Stein\(^3\), Avessie Amedome\(^4\), Alan Joseph J. Caceres\(^4\), Juan Castillo\(^4\), Evan Closser\(^4\), Gabriel Deards\(^4\), Andriy Goltsev\(^4\), Roumwelle Sta. Ines\(^4\), Cem Isbilir\(^4\), Joan K. Marc\(^4\), Diquan Moore\(^4\), Dana Pardi\(^4\), Sandeep Sadhu\(^4\), Samuel Sanchez\(^4\), Pooja Sharma\(^4\), Anoopa Singh\(^4\), Joshua Rogers\(^4\), Aron Wolinetz\(^4\), Terri Grosso-Applewhite\(^4\), Kai Zhao\(^4\), Andrew B. Filipski\(^5\), Robert F. Gilmour Jr\(^3\), Radu Grosu\(^5\), James Glimm\(^1\), Scott A Smolka\(^5\), Elizabeth M. Cherry\(^3,7\), Edmund M. Clarke\(^8\), Nancy Griffeth\(^4\), Flavio H. Fenton\(^3\)

\(^1\)Department of Applied Mathematics and Statistics, Stony Brook University, NY. \(^2\)Department of Biomedical Engineering, Cornell University, Ithaca, NY. \(^3\)Department of Biomedical Sciences, Cornell University, NY. \(^4\)The City University of New York. \(^5\)Department of Software Engineering, Rochester Institute of Technology, NY. \(^6\)Department of Computer Science, Stony Brook University, NY. \(^7\)Department of Applied Mathematics, Rochester Institute of Technology, NY. \(^8\)Computer Science Department, Carnegie Mellon University, PA
Student Evaluations – Specific Learning Objectives

- Analyze models
- Biological processes
- Build models
- Verify properties
- Scientific Hypotheses
- How research works
Best things about workshop...

- **Learning experience**
 - A ground-up exposure to the process of formulating a model
 - Running the Simulations of the Spiral waves on the cuda GPU
 - Learning how heart fibrillation works
 - Learning about the resources and technology … necessary for … research
 - Applications of parallel computation to simulate the human heart

- **Collaboration**
 - The opportunity to collaborate with other peers in different disciplines.
 - Seeing how every area of science (Biology, Math) work together to solve the real world problems from very distinguished professors

- **Future plans**
 - This workshop inspired me to pursue information outside of my own discipline.
 - Getting a sense that I am capable of doing similar research
Suggested improvements

- More of the biological background relevant to our models. I really enjoyed Robert Gilmore’s presentation … it would have been more helpful to begin with [it].
- [Topics], whether biology, math, or programming, [were] first presented in a complex manner and then more simply.
- More time to working on projects and presentations
- I would do the Math first.
- [More on] how to construct a basic differential equation that describes some simple behavior
- **Week one**: general introductions of the concept to students of all majors.
 Week two: separate students by majors and provide more intense learning in the field related to each group
 Week three: final project
Planned 2012 Workshop

- Challenge problem: Pancreatic Cancer
- Collaborators: Jim Faeder, Ed Clarke, ...