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Model Checking Problem

Ask: M |= φ ?

M is a model

φ is a property/requirement

|= is a satisfaction relation
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Related Problems

Synthesis Problem

Find a suitable M: � |= φ

Property extraction problem

Find all suitable φ: M |= {�}
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Motivation for Requirements Extraction

System comprehension

System reconstruction

Incomplete/missing/out-dated documentation
“Implicit” (and sometimes unintended) requirements (during
construction of system)

Requirements extraction can serve as a way to estimate high
level behavior of a system in terms of the properties that it
exhibits.
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Automatic Requirement Extraction from Test Cases [ACH+10]
(joint work with Fraunhofer and Robert Bosch)
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Observations

By varying the method by which test cases are generated, we
extracted different degrees of requirements

Randomized - yielded sparse and lower total number of
requirements
Structurally guided (MCDC coverage) - more complete overall
requirement set

Iterating requirement extraction process helped lead to
refinement of final results
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A Caveat, and Moving On

In this work we assumed the model was known to us, and a
test suite was generated to satisfy some coverage criterion on
the model. What can be done without knowledge of the
model?

Given a set of a system’s executions E , what properties can
be discovered of the system that hold “true?”

Here a “true” property means one with some measure of
accuracy over the execution set E , such as satisfying some
support. [AIS93]

The properties discovered should be in some understandable
and usable format, such as a temporal logic.
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Learning from executions

Treat set E as a sequence database, and incorporate
sequential pattern mining. [AS95, YHA03, Moe07]

Can mine patterns of the form

A → B → C → . . .

Which can be rewritten as

F (A → XF (B → XF (. . .)))
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Support Metric

Sequential pattern mining algorithms do not only return
patterns that are correct 100% of the time. Typically they
require a support parameter, which specifies how often rules
must be correct to be considered significant.

The previous rule is more properly written as

P=s [F (A → XF (B → XF (. . .)))]

Here, the rule has been written in probabilistic temporal logic
expressing uncertainty in its occurrence.
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Related work

Recent work [LKL07, LKL08] discovers rules of a software
code base (JBoss Application Server) in an effort to uncover
underlying program design and identify bugs. Characterization
of temporal logic fragments that are covered is unclear.

BIOCHAM [CFS06] - ad hoc machine learning inference of
temporal logic formulae for bio-molecular interaction networks.
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Next Steps

Expand supported fragement of temporal logic as much as
possible. How far can we go?

Different fragments are useful for different application
domains

Software engineering/program analysis:

event → F¬(power stays on)

Metabolic pathways:

protA → protB → ¬protC → protD

protA → protB a protC → protD
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Thanks!
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