
Inferring Temporal System Properties

Samuel Huang, joint work with Rance Cleaveland

University of Maryland, College Park

April 28th, 2011

Samuel Huang, joint work with Rance Cleaveland Inferring Temporal System Properties



Model Checking Problem

Ask: M |= φ ?

M is a model

φ is a property/requirement

|= is a satisfaction relation

Samuel Huang, joint work with Rance Cleaveland Inferring Temporal System Properties



Related Problems

Synthesis Problem

Find a suitable M: � |= φ

Property extraction problem

Find all suitable φ: M |= {�}

Samuel Huang, joint work with Rance Cleaveland Inferring Temporal System Properties



Related Problems

Synthesis Problem

Find a suitable M: � |= φ

Property extraction problem

Find all suitable φ: M |= {�}

Samuel Huang, joint work with Rance Cleaveland Inferring Temporal System Properties



Motivation for Requirements Extraction

System comprehension

System reconstruction

Incomplete/missing/out-dated documentation
“Implicit” (and sometimes unintended) requirements (during
construction of system)

Requirements extraction can serve as a way to estimate high
level behavior of a system in terms of the properties that it
exhibits.

Samuel Huang, joint work with Rance Cleaveland Inferring Temporal System Properties



Automatic Requirement Extraction from Test Cases [ACH+10]
(joint work with Fraunhofer and Robert Bosch)

Convert
Invariants to

Monitor Models

Generate
Test Cases

Infer
Invariants

Instrument Design
Model with

Monitor Models

Valid
Requirements

Design
Model

terminate

Samuel Huang, joint work with Rance Cleaveland Inferring Temporal System Properties



Observations

By varying the method by which test cases are generated, we
extracted different degrees of requirements

Randomized - yielded sparse and lower total number of
requirements
Structurally guided (MCDC coverage) - more complete overall
requirement set

Iterating requirement extraction process helped lead to
refinement of final results

Samuel Huang, joint work with Rance Cleaveland Inferring Temporal System Properties



Observations

By varying the method by which test cases are generated, we
extracted different degrees of requirements

Randomized - yielded sparse and lower total number of
requirements
Structurally guided (MCDC coverage) - more complete overall
requirement set

Iterating requirement extraction process helped lead to
refinement of final results

Samuel Huang, joint work with Rance Cleaveland Inferring Temporal System Properties



Observations

By varying the method by which test cases are generated, we
extracted different degrees of requirements

Randomized - yielded sparse and lower total number of
requirements
Structurally guided (MCDC coverage) - more complete overall
requirement set

Iterating requirement extraction process helped lead to
refinement of final results

Samuel Huang, joint work with Rance Cleaveland Inferring Temporal System Properties



Observations

By varying the method by which test cases are generated, we
extracted different degrees of requirements

Randomized - yielded sparse and lower total number of
requirements
Structurally guided (MCDC coverage) - more complete overall
requirement set

Iterating requirement extraction process helped lead to
refinement of final results

Samuel Huang, joint work with Rance Cleaveland Inferring Temporal System Properties



A Caveat, and Moving On

In this work we assumed the model was known to us, and a
test suite was generated to satisfy some coverage criterion on
the model. What can be done without knowledge of the
model?

Given a set of a system’s executions E , what properties can
be discovered of the system that hold “true?”

Here a “true” property means one with some measure of
accuracy over the execution set E , such as satisfying some
support. [AIS93]

The properties discovered should be in some understandable
and usable format, such as a temporal logic.

Samuel Huang, joint work with Rance Cleaveland Inferring Temporal System Properties



Learning from executions

Treat set E as a sequence database, and incorporate
sequential pattern mining. [AS95, YHA03, Moe07]

Can mine patterns of the form

A → B → C → . . .

Which can be rewritten as

F (A → XF (B → XF (. . .)))

Samuel Huang, joint work with Rance Cleaveland Inferring Temporal System Properties



Support Metric

Sequential pattern mining algorithms do not only return
patterns that are correct 100% of the time. Typically they
require a support parameter, which specifies how often rules
must be correct to be considered significant.

The previous rule is more properly written as

P=s [F (A → XF (B → XF (. . .)))]

Here, the rule has been written in probabilistic temporal logic
expressing uncertainty in its occurrence.

Samuel Huang, joint work with Rance Cleaveland Inferring Temporal System Properties



Related work

Recent work [LKL07, LKL08] discovers rules of a software
code base (JBoss Application Server) in an effort to uncover
underlying program design and identify bugs. Characterization
of temporal logic fragments that are covered is unclear.

BIOCHAM [CFS06] - ad hoc machine learning inference of
temporal logic formulae for bio-molecular interaction networks.

Samuel Huang, joint work with Rance Cleaveland Inferring Temporal System Properties



Next Steps

Expand supported fragement of temporal logic as much as
possible. How far can we go?

Different fragments are useful for different application
domains

Software engineering/program analysis:

event → F¬(power stays on)

Metabolic pathways:

protA → protB → ¬protC → protD

protA → protB a protC → protD

Samuel Huang, joint work with Rance Cleaveland Inferring Temporal System Properties



Thanks!

Samuel Huang, joint work with Rance Cleaveland Inferring Temporal System Properties



Christopher Ackermann, Rance Cleaveland, Samuel Huang, Arnab
Ray, Charles P. Shelton, and Elizabeth Latronico.

Automatic requirement extraction from test cases.

In RV, pages 1–15, 2010.

Rakesh Agrawal, Tomasz Imieliński, and Arun Swami.

Mining association rules between sets of items in large databases.

In SIGMOD ’93: Proceedings of the 1993 ACM SIGMOD
international conference on Management of data, pages 207–216,
New York, NY, USA, 1993. ACM.

Rakesh Agrawal and Ramakrishnan Srikant.

Mining sequential patterns.

In Philip S. Yu and Arbee S. P. Chen, editors, Eleventh International
Conference on Data Engineering, pages 3–14, Taipei, Taiwan, 1995.
IEEE Computer Society Press.

Samuel Huang, joint work with Rance Cleaveland Inferring Temporal System Properties



Laurence Calzone, François Fages, and Sylvain Soliman.

Biocham: an environment for modeling biological systems and
formalizing experimental knowledge.

Bioinformatics, 22:1805–1807, July 2006.

David Lo, S.-C Khoo, and C Liu.

Mining temporal rules from program execution traces.

In Proc. of Int. Work. on Program Comprehension through Dynamic
Analysis, 2007.

David Lo, Siau-Cheng Khoo, and Chao Liu.

Mining past-time temporal rules from execution traces.

In Proceedings of the 2008 international workshop on dynamic
analysis: held in conjunction with the ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2008), WODA
’08, pages 50–56, New York, NY, USA, 2008. ACM.

Samuel Huang, joint work with Rance Cleaveland Inferring Temporal System Properties



Fabian Moerchen.

Unsupervised pattern mining from symbolic temporal data.

SIGKDD Explor. Newsl., 9:41–55, June 2007.

Xifeng Yan, Jiawei Han, and Ramin Afshar.

CloSpan: Mining Closed Sequential Patterns in Large Datasets.

In In SDM, pages 166–177, 2003.

Samuel Huang, joint work with Rance Cleaveland Inferring Temporal System Properties


