
δ-Complete Reachability Analysis for Nonlinear Hybrid Systems

Sicun (Sean) Gao

Carnegie Mellon University

CMACS PI Meeting
4-27-2012

Joint work with Edmund Clarke and Jeremy Avigad

1/33

Model Checking, Reachable Set Computation, Differential Logics

I Cyber-physical Systems: Combine physics and information-processing.

I Different verification techniques are suitable for different tasks.

I Differential Logics: Verify the logical frameworks.

I Reachable Set Computation: Visualize complete dynamics.

I Model Checking: Return counterexamples.

2/33

Hybrid System Example

I Simplified Controller of an automated guided vehicle [Lee and Seshia,
2011]

3/33

Hybrid Systems

H = 〈X,Q, Init,Flow, Jump〉

I A state space X ⊆ Rk and a finite set of modes Q.

I Init ⊆ Q×X: initial configurations

I Flow :⊆ Q×X → TX: continuous flows

I Each mode q is equipped with differential equations
d~x

dt
= ~fq(~x, t).

I Jump :⊆ Q×X → 2Q×X : discrete jumps

I The system can be switched from (q, ~x) to (maybe multiple) (q′, ~x′),
resetting modes and variables.

Continuous flows are interleaved with discrete jumps.

4/33

Bounded Model Checking

The idea of bounded model checking is the following:

I The behavior of a transition system can be encoded as logic formulas.

I Init(~x0) ∧
Vk

i=0(Transition(~xi, ~xi+1)) ∧ Unsafe(~xk+1)?

I Very fast (SAT/SMT) solvers can be used for deciding such formulas (say
yes or no).

I The usual point of view is that it only works for discrete systems.

I Extremely successful in the hardware design domain.

5/33

Encoding Continuous Dynamics

I Continuous Dynamics:
d~x(t)

dt
= ~f(~x(t), t)

I The solution curve:

α : R→ X, α(t) = α(0) +

Z t

0

~f(α(s), s)ds.

I Define the predicate (probably no analytic forms)

JFlowf (~x0, t, ~x)KM = {(~x0, t, ~x) : α(0) = ~x0, α(t) = ~x}

Reachability:

∃~x0, ~x, t. (Init(~x0) ∧ Flowf (~x0, t, ~x) ∧ Unsafe(~x)) ?

6/33

Encoding Bounded Reachability for Hybrid Systems

For hybrid systems we combine continuous and discrete behaviors:

I “~x is reachable after after 0 discrete jumps”:

Reach0(~x) := ∃~x0, t. [Init(~x0) ∧ Flow(~x0, t, ~x)]

I Inductively, “~x is reachable after k + 1 discrete jumps”:

Reachk+1(~x) := ∃~xk, ~x
′
k, t. [Reachk(~xk) ∧ Jump(~xk, ~x

′
k) ∧ Flow(~x′k, t, ~x)]

(Some details are omitted.)

Reachability within n discrete jumps:

∃~x. (
n_

i=0

Reachi(~x) ∧ Unsafe(~x)) ?

7/33

Decision Procedures over Reals

I The Flow and Jump predicates in the formulas require a rich signature of
nonlinear functions.

I polynomials

I exponentiation and trigonometric functions

I solutions of ODEs, mostly no analytic forms

I To handle naive unrolling, the arithmetic theory is way less than enough.

I In realistic systems at least some linear dynamical systems occur.

I Various techniques have been developed to encode interesting
behaviors in arithmetic; but of course not a large part of them.
(We will discuss invariant-based reasoning later.)

8/33

Difficulty with Symbolic Decision Procedures

We are all aware of difficulties of symbolic decision procedures over reals when
nonlinear functions are involved.

I For the theory of nonlinear arithmetic:

I Double-exponential lower bound for quantifier elimination (PSPACE
for Σ1).

I Very active research in the past thirty years.

I Available solvers: challenged by formulas with ten variables.

I The general first-order theory over exp, sin, ODEs, ...

I Wildly undecidable.

I Is formal verification impossible because of this?

9/33

Scaling up: Use Numerical Methods?

However, large systems of real equalities/inequalities/ODEs are numerically
solved routinely in scientific computing.

I They are usually regarded inappropriate for verification because of the
inevitable numerical errors.

I (Platzer and Clarke, HSCC 2008)

I But isn’t there any way to use them?

Let’s start by formalizing “numerical algorithms”.

10/33

Numerical Computability

What does it mean to say a function f over reals is “numerically computable”?

I There exists an algorithm Mf , such that given a good approximation of x,
Mf can find a good approximation of f(x).

I “A real function is computable if we can draw it faithfully.”

I This leads to Computable Analysis (a.k.a. Type-II Computability) over real
numbers. [A. Turing, A. Grzegorczyk, K. Weihrauch, S. Cook]

11/33

Type-II Turing Machines

I Any real number a is encodable by a name γa : N→ Q satisfying

∀i, |a− γa(i)| < 2−i

I A Type-II Turing machine extends the ordinary by allowing input and
output tapes to be both infinite. The working tape remains finite.

I Although output tape is infinite, each symbol needs to be written down
after finitely many operations.

12/33

Type-II Computable Functions

I A function f is Type-II computable, if there exists a Type-II Turing
machine Mf , s.t.:

Given any γ~x of ~x ∈ dom(f), Mf outputs a γf(~x) of f(~x).

13/33

Example

I ex is Type-II computable over [−1, 1].

I Suppose we want to compute ex at some x ∈ [−1, 1] with an error
bound 2−n on the output. Since

ex =
∞X

k=0

1

k!
xk

We only need to expand the series to n+ 1 terms, and the error is
controlled by

(ex −
nX

k=0

xk

k!
) ≤

∞X
k=n+1

1

k!
< 2−(n+1).

I We then use a 2−m rational approximation of x to evaluate the
truncated series, where m ≤ n+ 4.

I It is computable because the number of terms, n+ 1, is computed from the error bound

2−n, and the truncated series is a computable function in the usual sense over rational

representation of x.

14/33

First-order Formulas with Computable Functions

I Let F be any recursive set of Type-II computable functions.

I This is a very general framework: F can contain polynomials, exp,
sin, and solutions of Lipschitz-continuous ODEs.

I Consider RF = 〈R, 0, 1,F , <〉 and the corresponding LF .

I Can we solve (decide the truth value of) logic formulas in LF over
RF?

I This would allow us to solve formulas that arise in bounded model
checking of hybrid systems, almost in its full generality.

I The obvious answer is of course NO.

But what if we take into account the numerical computability of F?

15/33

Robust Formulas

Suppose we want to decide a formula in LF :

∃Ix.(f(x)= 0 ∧ g(x)= 0).

(I ⊆ R is a bounded interval where f and g are defined).

I Numerical algorithms can never compute f(x) and g(x) precisely for all x.

I But Type-II computability implies that it is possible to fix any error bound
δ, and numerically decide the relaxed formula:

∃Ix.(|f(x)|< δ ∧ |g(x)|< δ)

16/33

δ-Robustness

Consequently, we could consider formulas whose satisfiability is invariant under
numerical perturbations.

I Consider any formula ϕ :=
V

i(
W

j fij(~x) = 0).

I Inequalities are turned into interval bounds on slack variables.

I A δ-perturbation on ϕ is a constant vector ~c satisfying ||~c||∞ < δ, and a
δ-perturbed ϕ is:

ϕ~c :=
∧
i

(
∨
j

|fij(~x)| = cij)

17/33

δ-Robustness

I We say satisfiability of ϕ is δ-robust (over some bounded ~I), if:

For any δ-perturbation ~c, ∃~I~x.ϕ↔ ∃~Ix.ϕ~c.

I Observations:

I If robust for bigger δ, then robust for smaller ones.

I Strict and non-strict inequalities are inter-changeable in robust
formulas. (But negations can still be encoded.)

18/33

Computational Benefits: Decidability

As it turns out, robust formulas in LF have nice computational properties.

I Theorem:

Satisfiability of robust bounded first-order over RF is decidable.

I This is significant given the richness of F : exp, sin, ODEs, ...

19/33

Computational Benefits: Complexity

I Theorem:

Suppose all the functions in F are in Type-II complexity class C, then
satisfiability of bounded SMT in LF can be decided in NPC.

I Corollaries:

I F = {+,×, exp, sin}: NP-complete.

I F = {Lipschitz-continuous ODEs}: PSPACE-complete.

20/33

Delta-Complete Decision Procedures

I Theorem: There exists decision algorithms that, on any ϕ in LF , returns

“sat/unsat” satisfying:

I If ϕ is decided as “unsat”, then it is indeed unsatisfiable.

I If ϕ is decided as “sat”, then:

Under some δ-perturbation ~c, ϕ~c is satisfiable.

I If a decision procedure satisfies this property, we say it is δ-complete.

21/33

Delta-Complete Bounded Model Checking

Recall that when bounded model checking a hybrid system H, we ask if

ϕ : Reach≤n
H (~x) ∧ Unsafe(~x)

is satisfiable.

I If ϕ is unsatisfiable, then H is safe up to depth n.

I If ϕ is satisfiable, then H is unsafe.

22/33

Delta-Complete BMC

Consequently, using a δ-complete decision procedure we can guarantee:

I If ϕ is “unsatisfiable”, then H is safe up to depth n.

I It is possible to make even stronger claims, that it is safe up to n under any

δ′-perturbation, where δ′ < δ is also specified by the user. In this case we say it is

(δ, δ′)-complete.

I If ϕ is “satisfiable”, then

H is unsafe under some δ-perturbation.

Consequently, if a system can become unsafe under some δ-perturbation, we
will be able to detect such unsafety.

I This can not be achieved using precise algorithms.

23/33

Practical δ-Complete Decision Procedures

I We have shown a general framework for deciding logic formulas in a rich
theory over reals, and their applicability in verification problems.

I No restriction on use of specific numerical algorithms.

I Interval Constraint Propagation, Semi-definite Programming, Convex
Optimization, CORDIC, Boundary-Value Solvers for ODEs, ...

I The obligation is to prove δ-completeness (rather than using them just as
heuristics).

24/33

Interval Constraint Propagation

I Interval Arithmetic + Constraint Programming.

I Starting from initial intervals on all variables, maintain an
over-approximation of the constraints using interval arithmetic. (Use
floating point arithmetic, outward-rounding.)

I Reduce (contraction+splitting) the size of intervals until some limit is
reached (say, 10−7). Return “unsat” if conflicts arise in the process
(i.e., intervals on the same variable become disjoint).

25/33

ICP in Practice

I Example:

I Solve {x = y, x2 = y} for x ∈ [1, 4] and y ∈ [1, 5]:

I Ix : [1, 4]→ [1,
√

5]→ [1, 4√5]→ [1, 8√5]→ [1, 16√5]→ · · · → [1,1]

I Iy : [1, 5]→ [1,
√

5]→ [1, 4√5]→ [1, 8√5]→ [1, 16√5]→ · · · → [1,1]

I Simple algorithm, but can solve large systems of nonlinear constraints.

I Many papers report solving constraints with thousands of variables
(robotics, planning, etc.).

I HySAT and [Gao et al. FMCAD2010] can solve many interesting
benchmarks.

I DPLL(ICP) is δ-complete.

26/33

Automatic Transmission Model from Simulink Demos

27/33

The Automatic Transmission Model

I Four main control locations (four gears) plus six transition modes.

28/33

The Automatic Transmission Model [Absmeier 2001; Runde 1984]

I Equations in the first gear:

It1ω̇ = Tt −R1RdTs

It1 = It + Isi +R2
1Icr +

R2
1

R2
2

Ici

RT12B =
Rsr

Rci
(
Tt − (It + Isi)ω̇t

Rsi
− Iciω̇ci + (1− 1

Rsi
))

I 1-2-1 Shift, Torque Phase:

It1ω̇ = Tt −R1RdTs − (1− R1

R2
)Tc2

RT12B =
Rsr

Rci
(Tc2 −

Isi

Rsi
ω̇si − Iciω̇ci)

29/33

The Automatic Transmission Model [Absmeier 2001; Runde 1984]

I Second Gear:

It2ω̇t = Tt −R2RdTs

RTc2up = Tt − Tc1 − Itω̇t

RTc2down =
Ici12

R2
ω̇cr −

R2

R1
Tc1 +R2RdTs

RT12B =
Rsr

Rci
(Tt −

Isi

Rsi
ω̇si − (It + Ici)ω̇t)

It2 = It + Ici +R2
2Icr +

R2
2

R2
1

Isi

I Third Gear:

It2ω̇t = Tt −R2RdTs

RTc2up = Tt − Tc1 − Itω̇t

RTc2down =
Ici12

R2
ω̇cr −

R2

R1
Tc1 +R2RdTs

...

30/33

The Automatic Transmission Model

I 2-3-2 Shift, Torque phase:

It2ω̇t = Tt + (1− R2

R1
)Tc3 −R2RdTs

RTc2up = Tt + Tc3 − Itω̇t

RTc2down = R2Icrω̇cr + Iciωci +
R2

R1
Isiω̇si +R1RdTs +

R2

R1
Tc3

RT12B =
Rsr

R2
(Tt +

Rcr

Rsi
Tc3 − (It + Ici)ω̇t −

Isi

Rsi
ω̇si)

I 2-3-2 Shift, Inertia Phase:

It23ω̇t = Tt + (1− 1

Rsi
Tc3 −

Rci

Rsr
T12B + Is23ω̇cr)

Icr23ω̇cr =
T12B

Rsr
− (1− 1

Rsi
)Tc3 −RdTs + Is23ω̇t

RTc2up = Tt + Tc3 − Itω̇t

RTc2down = R2Icrω̇cr + Iciω̇ci +
R2

R1
Isiω̇si +R2RdTs −

R2

R1
Tc3

31/33

Results from dReal

I Reachability Question: t1 < 15 ∧ t2 < 50 ∧ ω(t1) > 50 ∧ ω(t2) = 0? (Can
the vehicle reach a certain speed and decelerate within a certain time
bound?)

I Answer: Yes, with sample trace returned. (Solved in 4.5s)

32/33

Conclusion

I Model checking can be used in the context of nonlinear continuous and
hybrid systems.

I Our technique relies on recent progress in the underlying decision
procedures, combining fast SAT solvers with numerical algorithms.

I We have developed the theory for ensuring the reliablility of such
combination.

I Our tool is under active development and will be available soon.

I We are developing tools for using our solver in the context of program
analysis of embedded code.

33/33

