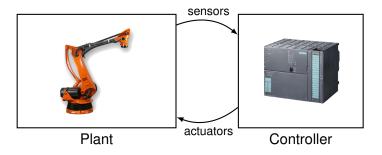
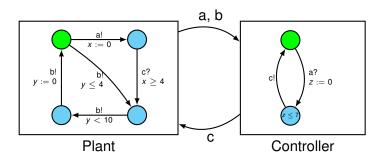
Counterexample-Guided Synthesis of Observation Predicates

Rayna Dimitrova and Bernd Finkbeiner Universität des Saarlandes

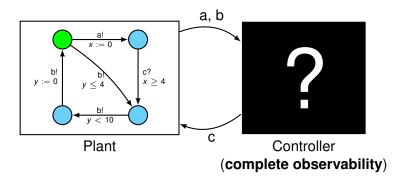
Control of Real-Time Systems



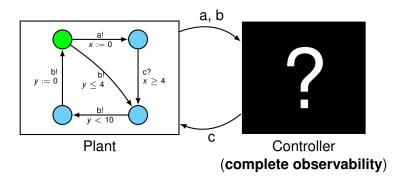
Timed Controller Verification



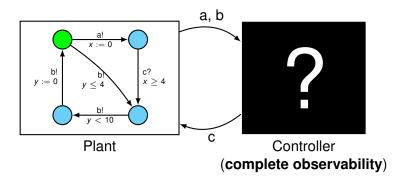
Model checking timed automata is PSPACE-complete [Alur & Dill, 1990]



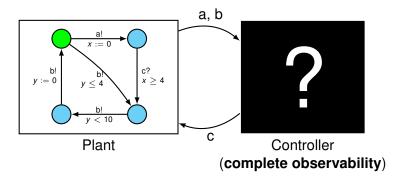
Solving a game of perfect information [Maler et al., 1995]



Safety synthesis is EXPTIME-complete [Henzinger & Kopke, 1999]

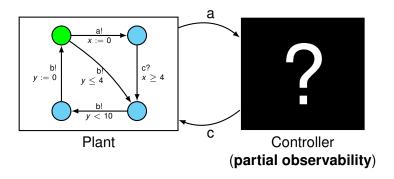


Effective game solving algorithm [Cassez et al., 2005]



The controller needs to perfectly observe the behavior of the plant

Timed Controller Synthesis with Partial Observation



More realistic assumption:

The controller can only partially observe the behavior of the plant

Timed Controller Synthesis with Partial Observation

- The problem is in general undecidable
- Decidable when a granularity is fixed

a maximal constant for each clock and a constant $m \in \mathbb{N}$ such that each constant used is an integral multiple of $\frac{1}{m}$

2EXPTIME-complete

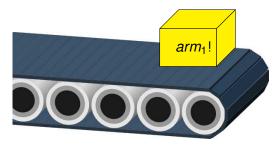
[Bouyer et al, 2003]

Decidable for fixed finite set of observation predicates {*o*₁, *o*₂, ..., *o_n*}, *o_i* = (*L_i*, φ_i) : set of locations and clock constraint

[Cassez, 2007]

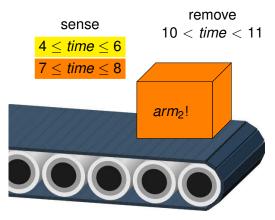
The Role of Observations in Timed Control

remove 10 < *time* < 11



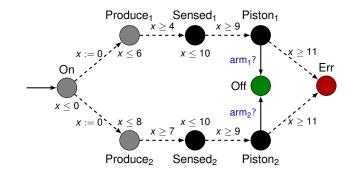
The controller has to remove the box strictly between 10 and 11 time units after the start of the production phase

The Role of Observations in Timed Control



- The controller has to remove the box strictly between 10 and 11 time units after the start of the production phase
- To choose the right action, the controller needs to distinguish the type of the box, based on the time the box was sensed

The Role of Observations in Timed Control



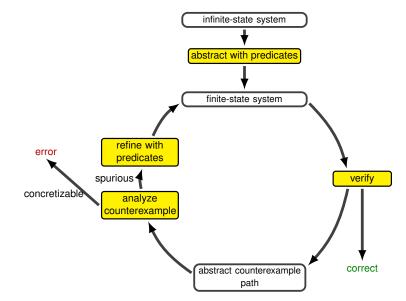
- Clock x unobservable, own (observable) clock y
- Observing $y \le 6$ (and hence y > 6) and $y = \frac{21}{2}$ suffices
- Observation predicates: constraints over the observable clocks
 - decision predicate $y \le 6$ (decide which action should be taken)
 - action point $y = \frac{21}{2}$ (when a controllable action can be taken)

How to Find Observation Predicates?

- Manually fix a finite set of observable predicates
- Refine granularity by brute-force enumeration 1, ¹/₂, ¹/₄, ...?
 Not a good idea:

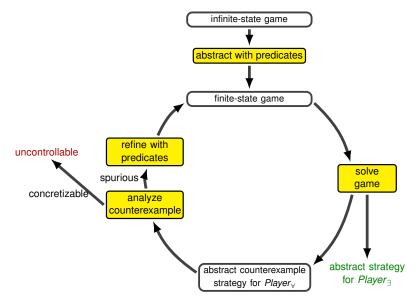
$$0 \xrightarrow{y \ge 1}_{y \le 1} \xrightarrow{y \ge 1}_{y \ge 0} \xrightarrow{y \ge 1}_{y \ge 1} \cdots \xrightarrow{y \ge 1}_{y \ge 0} \xrightarrow{y \ge 1}_{y \ge 0}$$

CEGAR



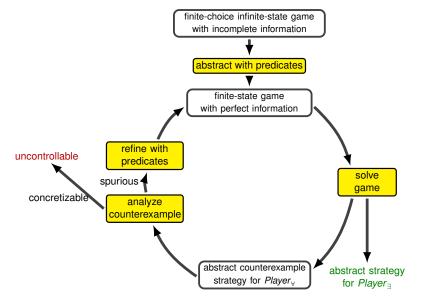
[Clarke et al., 2000]

CEGAR for Games



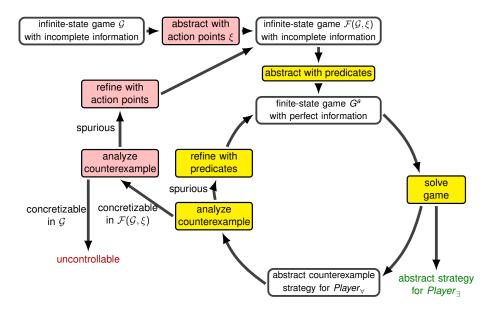
[Henzinger et al., 2003]

CEGAR for Games with Incomplete Information

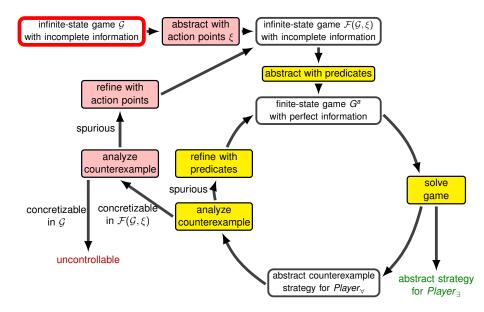


[DF, 2008]

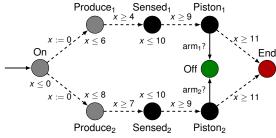
Counterexample-Guided Synthesis of Observations



Overview



The Synthesis Problem



$(0 \rightarrow S)? \qquad arm_1!$ $y \leq 6 \qquad y \leq \frac{21}{2} \qquad y \geq \frac{21}{2}$ $(0 \rightarrow S)? \qquad y \leq \frac{21}{2} \qquad arm_2!$ $y \geq 6 \qquad y \geq \frac{21}{2} \qquad arm_2!$ $y \geq \frac{21}{2} \qquad y \geq \frac{21}{2}$

$\mathsf{Plant}\,\mathcal{P}$

- unobservable clocks X_u
 - $X_{u} = \{x\}$
- observable clocks X_o
 - $X_{o} = \emptyset$
- equivalence on locations $F = {Off}, E = {Err},$ $O = {On, Produce_1, Produce_2},$ $S = {Sensed_1, Sensed_2, Piston_1, Piston_2}$

Controller C

- own set of clocks X_c
 - ► X_c = {y}
- controllable actions Σ_c (uncontrollable Σ_u)
 - $\Sigma_c = \{arm_1, arm_2\}$
- observes transitions
 - ▶ $(0 \rightarrow S), \dots$

The Synthesis Game

- Two-player infinite-state games with incomplete information
- ▶ *Player*_∃ represents the controller, *Player*_{\forall} the environment (plant)
- Safety objective encodes safety timed controller synthesis

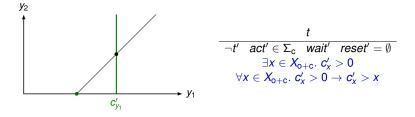
Symbolic Game Representation

Variables updated by *Player*_∃:

- ► finite-range: *t*, $V_{\exists}^{<\infty} = \{act, wait, reset\}$
- ► symbolic constants: $V_{\exists}^{\infty} = \{c_x \mid x \in X_{o+c}\} (X_{o+c} = X_o \cup X_c)$

Transition relation for $Player_{\exists}$:

- choose to remain idle and let time elapse
- choose to reset a set of controllable clocks
- choose to execute an action in Σ_c immediately
- choose to execute an action in Σ_c after a delay



Symbolic Game Representation

Variables updated by $Player_{\forall}$:

- ► observable by $Player_{\exists}$: $t, V_{\forall}^o = X_o \dot{\cup} X_c \dot{\cup} \{oloc, reset_enabled\}$
- ▶ unobservable by $Player_{\exists}$: $V_{\forall}^{u} = X_{u} \dot{\cup} \{loc, delay_enabled\}$

Transition relation for $Player_{\forall}$:

- execute an enabled uncontrollable action
- ▶ execute the controllable action chosen by *Player*_∃

 $\neg t \quad (\neg wait \lor \neg delay_enabled) \quad act = \sigma \quad (loc, v) \xrightarrow{\sigma} (loc', v')$

t' oloc' = [loc'] reset_enabled' delay_enabled'

- Iet time elapse by making a delay transition
- ► reset the controllable clocks chosen by Player_∃
- give the turn to $Player_{\exists}$ to make a move
- do a skip transition leaving all variables unchanged

Symbolic Game Representation

Transition relation for $Player_{\forall}$:

- execute the controllable action chosen by Player_∃
- execute an enabled uncontrollable action
- Iet time elapse by taking a delay transition

$$\begin{array}{c|c} \neg t & \textit{wait delay_enabled} & \sigma \in \mathbb{R}_{>0} & (\textit{loc}, v) \xrightarrow{\sigma} (\textit{loc}', v') \\ \hline \neg t' & \textit{oloc}' = \textit{oloc} & \forall x \in X_{c}. \ x' = x + \sigma \\ & (\textit{act} \neq \bot \rightarrow \forall x \in X_{o+c}. \ x < \textit{c}_{x} \rightarrow x' < \textit{c}_{x}) \end{array}$$

- ► reset the controllable clocks chosen by Player_∃
- give the turn to Player_∃ to make a move
- do a skip transition leaving all variables unchanged

Strategies

Strategy:

maps a prefix of a play (sequence of variable valuations) to a successor valuation of the variables updated by the player, which must result in a successor state for the last state

Winning strategy:

achieves the objective (e.g., avoid or reach a given set of (error) states) regardless of the opponent's behavior

A strategy for *Player*_∃ must be consistent: reacts in the same way for prefixes that agree on the valuations of the variables that *Player*_∃ can observe

The definition of the game guarantees that $Player_{\exists}$ does not gain information from observing individual moves of $Player_{\exists}$ other than those that correspond to observable transitions in the plant \mathcal{P} .

Control Strategies

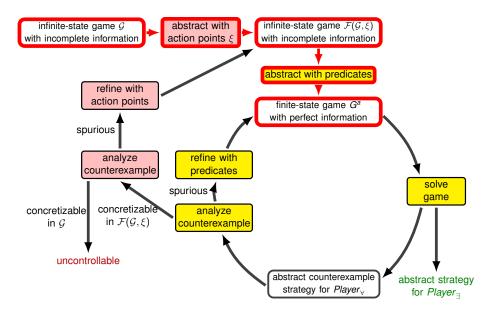
winning strategy for $Player_{\exists}$ \Leftrightarrow control strategy to avoid error location

Strategy for *Player*_¬ with

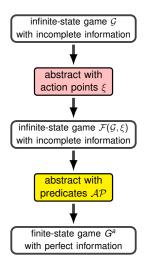
- finite set of memory states
- finite set of outputs
- rectangular or diagonal observations

can be transformed into a controller automaton

Overview



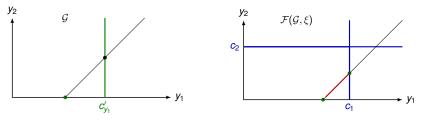
Abstraction Steps



- 1. fix a finite set of action points ξ
 - restrict the timing precision of the controllable actions
 - ► the resulting nondeterminism is resolved by Player_∀
- 2. abstract the game w.r.t. a finite set of abstraction predicates \mathcal{AP}
 - ▶ fix/restrict the (observation) power of *Player*∃
 - ► overapproximate the possible behaviors of *Player*_∀

Fixing the Action Points

- ► $\xi(y) \subset \mathbb{Q}_{>0}$ finite set of action points for each clock $y \in X_{0+c}$
- ▶ In G, *Player*_∃ can choose when a controllable action will be executed
- In *F*(*G*, ξ), *Player*_∃ can choose to execute the action immediately or within a certain interval determined by the current clock values and ξ



- Construct $\mathcal{F}(\mathcal{G},\xi)$ from \mathcal{G} by
 - removing the variables $V_{\exists}^{\infty} = \{c_x \mid x \in X_{o+c}\}$
 - adjusting the transition relations accordingly (using ξ)

Fixing the Action Points

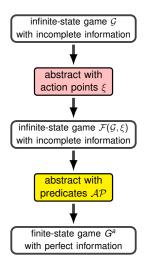
Game with fixed action points $\mathcal{F}(\mathcal{G},\xi)$

Variables updated by $Player_{\exists}$: $t, V_{\exists}^{<\infty} = \{act, wait, reset\}$

► *Player*_∃ chooses to execute an action in Σ_c after a delay $\frac{t}{\neg t' \quad act' \in \Sigma_c \quad wait' \quad reset' = \emptyset}$

► Player_∀ lets time elapse by making a delay transition

Abstraction Steps



- 1. fix a finite set of action points ξ
 - restrict the timing precision of the controllable actions
 - ► the resulting nondeterminism is resolved by Player_∀
- 2. abstract the game w.r.t. a finite set of abstraction predicates \mathcal{AP}
 - ▶ fix/restrict the (observation) power of *Player*∃
 - ► overapproximate the possible behaviors of *Player*_∀

Predicate Abstraction

Abstraction predicates

- AP finite set of abstraction predicates over all variables
- ▶ valuation *a* boolean vector with one element for each predicate in *AP*

Goal: overapproximate the observation equivalence relation

Abstract states are sets of valuations

which have the same values for the observable predicates in \mathcal{AP}

Example:

$$\mathcal{AP} = \{x = 0, y \le 1\}$$

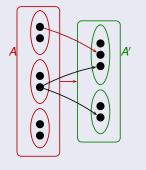
in a_0 , x = 0 is false in a_1 , x = 0 is true

Predicate Abstraction

Goal: give more power to $Player_{\forall}$, restrict the power of $Player_{\exists}$

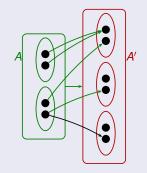
For *Player*_∀

 $(A, A') \in T_{\forall}^a$ if there exist states s for A and s' for A': $(s, s') \in T_{\forall}^{\mathcal{F}}$



For *Player*_∃

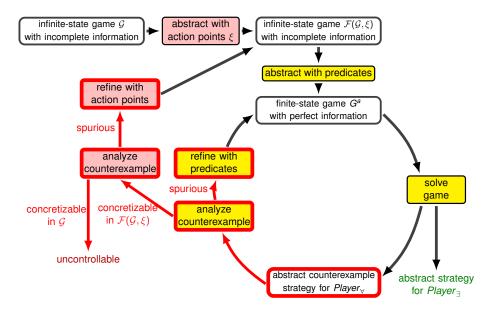
 $(A, A') \in T_{\exists}^{a}$ if for every s for A there exists s' for A': $(s, s') \in T_{\exists}^{\mathcal{F}}$



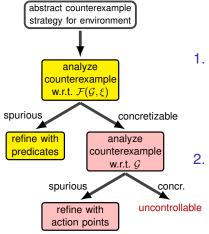
Sound Abstraction

winning strategy for $Player_{\exists}$ in G^a \Rightarrow consistent winning strategy for $Player_{\exists}$ in \mathcal{G}

Overview



Refinement Steps



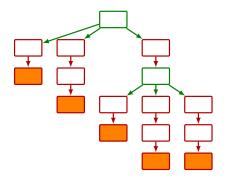
1. New abstraction predicates for \mathcal{AP}

- are computed using interpolation
- to refine the abstract transition and observation equivalence relations
- . New action points for ξ
 - are extracted from witnesses for satisfiability of the negation of a formula characterizing concretizability in the game G
 - to allow for better timing precision of controllable actions

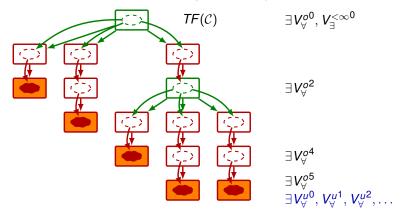
Abstract Counterexample

Abstract counterexample C:

- branches according to all abstract successors of the states belonging to *Player*_∃
- root: initial state
- leaves: error states



Abstract Counterexample Analysis for \mathcal{F}



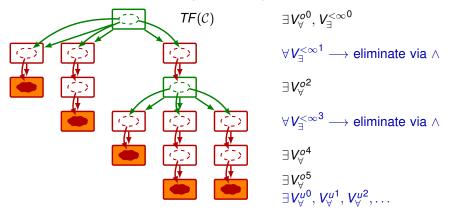
Tree formula TF(C)

The abstract counterexample ${\mathcal C}$ is concretizable in ${\mathcal F}$

 \Leftrightarrow

the tree formula TF(C) is satisfiable.

Abstract Counterexample Analysis for \mathcal{F}



Tree formula TF(C)

- ▶ τ_1, τ_2, \ldots : finite sequences of valuations of the variables $V_{\exists}^{<\infty}$
- ▶ since the domain of $V_{\exists}^{<\infty}$ is finite, finitely many sequences for C
- tree formula $TF(C) = F(C, \tau_1) \land \ldots \land F(C, \tau_n)$

Refining the Predicate Abstraction

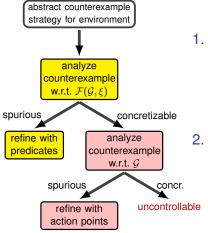
Case I: Abstract transition relation too coarse

- Some $TF(C, \tau)$ is not satisfiable
- Find interpolant by splitting τ into prefix and suffix in the usual way.

Case II: Abstract observation equivalence too coarse

- Each of *TF*(C, τ₁) and *TF*(C, τ₂) is satisfiable, *TF*(C, τ₁) ∧ *TF*(C, τ₂) not
- Compute interpolant *I*: $TF(C, \tau_1) \Rightarrow I$ and $I \land TF(C, \tau_2)$ unsatisfiable
- I is over shared variables and, thus, only observable variables

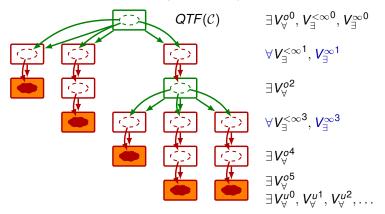
Refinement Steps



1. New abstraction predicates for \mathcal{AP}

- are computed using interpolation
- to refine the abstract transition and observation equivalence relations
- New action points for ξ
 - are extracted from witnesses for satisfiability of the negation of a formula characterizing concretizability in the game G
 - to allow for better timing precision of controllable actions

Abstract Counterexample Analysis for G

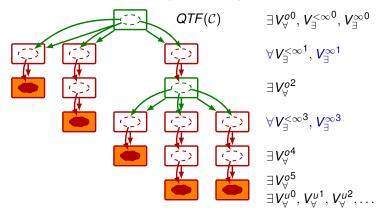


Quantified tree formula QTF(C)

The abstract counterexample \mathcal{C} is concretizable in \mathcal{G}

the quantified tree formula QTF(C) is satisfiable.

Abstract Counterexample Analysis for G



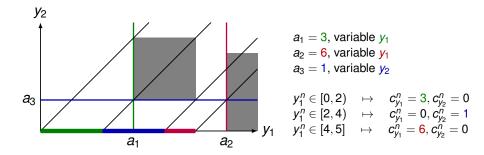
Quantified tree formula QTF(C)

 $QTF(\mathcal{C}) = \dots \forall V_{\exists}^{\infty n} \dots \text{ unsatisfiable}$ \Leftrightarrow $\Phi = \neg QTF(\mathcal{C}) = \dots \exists V_{\exists}^{\infty n} \dots \text{ satisfiable}$

Computing Action Points

Restriction on the witness functions for V_{\exists}^{∞}

- ▶ for $k \in \mathbb{N}_{>0}$, Φ_k requires that Φ is satisfied and for each block $\exists V_\exists^{\infty n}$
 - there are constants a₁,..., a_k such that the witness function selects one of them and a corresponding variable in each of k cases



Computing Action Points

Strengthening Φ

- strengthening for $k \in \mathbb{N}_{>0}$
- free variables for action points and corresponding variable indices

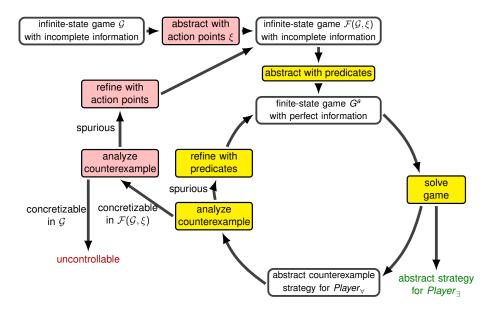
Refinement procedure

- Start with k = 1 and iterate incrementing k while Φ_k is unsatisfiable
- If some Φ_k is satisfiable, then extract the action points from model

Progress

If the loop terminates, the action points in ξ' suffice to eliminate from $\mathcal{F}(\mathcal{I}, \xi')$ all winning strategies for $Player_{\exists}$ that are subsumed by f_e .

Overview



Experimental Results

- Experiments with a prototype implementation
- Problem is out of the scope of state-of-the-art tools for timed controller synthesis
 no fully relevant comparison possible
- UPPAAL-TIGA: timed games with partial observability and fixed observable predicates, two examples from [CDLLR07]
- Compare to UPPAAL-TIGA using fixed granularity (observable predicates 0 ≤ y < 1, or, respectively, 0 ≤ y < 0.5 scaled accordingly)</p>
- Scale examples to demonstrate the advantage of our approach over using fine granularity instead of (automatically) discovered predicates

Experimental Results

	A. Strategy	Act. Points	Obs. Preds	Time (s)	TIGA (s)
Paint	55	2	16	72.44	0.08
Paint-100	49	2	15	29.52	3.57
Paint-1000	49	2	15	29.57	336.34
Paint-10000	71	2	16	52.82	> 1800
Paint-100000	71	2	16	52.21	> 1800
Bricks	166	3	17	24.69	0.05
Bricks-100	174	3	17	24.43	2.63
Bricks-1000	174	3	17	24.21	302.08
Bricks-10000	154	3	17	24.62	> 1800
Bricks-100000	174	3	17	24.00	> 1800

Conclusions

- Counterexample-guided synthesis of observation predicates
- Two nested refinement loops:
 - analytical inner loop, computes decision predicates based on interpolation
 - constructive outer loop, computes action points based on witnesses of satisfiability
- Automatic synthesis of timed controllers with partial observation
- Pattern for reactive synthesis under incomplete information