
Counterexample-Guided Synthesis

of Observation Predicates

Rayna Dimitrova and Bernd Finkbeiner
Universität des Saarlandes

Control of Real-Time Systems

sensors

actuators
Plant
aaa

Controller
aaa

XXX
XXX

Timed Controller Verification

a!
x := 0

c?
x ≥ 4

b!
y ≤ 4

b!
y < 10

b!
y := 0

z ≤ 7

a?
z := 0c!

a, b

c
Plant

(timed automaton)
Controller

(timed automaton)

Model checking timed automata is PSPACE-complete
[Alur & Dill, 1990]

Timed Controller Synthesis

a!
x := 0

c?
x ≥ 4

b!
y ≤ 4

b!
y < 10

b!
y := 0 ?

a, b

c
Plant

(timed automaton)
Controller

(complete observability)

Solving a game of perfect information
[Maler et al., 1995]

Timed Controller Synthesis

a!
x := 0

c?
x ≥ 4

b!
y ≤ 4

b!
y < 10

b!
y := 0 ?

a, b

c
Plant

(timed automaton)
Controller

(complete observability)

Safety synthesis is EXPTIME-complete
[Henzinger & Kopke, 1999]

Timed Controller Synthesis

a!
x := 0

c?
x ≥ 4

b!
y ≤ 4

b!
y < 10

b!
y := 0 ?

a, b

c
Plant

(timed automaton)
Controller

(complete observability)

Effective game solving algorithm
[Cassez et al., 2005]

Timed Controller Synthesis

a!
x := 0

c?
x ≥ 4

b!
y ≤ 4

b!
y < 10

b!
y := 0 ?

a, b

c
Plant

(timed automaton)
Controller

(complete observability)

The controller needs to perfectly observe the behavior of the plant
XXX

Timed Controller Synthesis with Partial Observation

a!
x := 0

c?
x ≥ 4

b!
y ≤ 4

b!
y < 10

b!
y := 0 ?

a

c
Plant

(timed automaton)
Controller

(partial observability)

More realistic assumption:
The controller can only partially observe the behavior of the plant

Timed Controller Synthesis with Partial Observation

! The problem is in general undecidable

! Decidable when a granularity is fixed

a maximal constant for each clock and a constant m ∈ N

such that each constant used is an integral multiple of 1
m

! 2EXPTIME-complete

[Bouyer et al, 2003]

! Decidable for fixed finite set of observation predicates

{o1, o2, . . . , on}, oi = (Li ,ϕi) : set of locations and clock constraint

[Cassez, 2007]

The Role of Observations in Timed Control

arm1!

remove
10 < time < 11

! The controller has to remove the box strictly between 10 and 11
time units after the start of the production phase

The Role of Observations in Timed Control

arm2!

remove
10 < time < 11

sense

4 ≤ time ≤ 6

7 ≤ time ≤ 8

! The controller has to remove the box strictly between 10 and 11
time units after the start of the production phase

! To choose the right action, the controller needs to distinguish the
type of the box, based on the time the box was sensed

The Role of Observations in Timed Control

On

x ≤ 0

Produce1

x ≤ 6

Sensed1

x ≤ 10

Piston1

Produce2

x ≤ 8

Sensed2

x ≤ 10

Piston2

Off

Err
x := 0

x := 0

x ≥ 4 x ≥ 9

arm1?
x ≥ 11

x ≥ 7 x ≥ 9

arm2?
x ≥ 11

! Clock x unobservable, own (observable) clock y

! Observing y ≤ 6 (and hence y > 6) and y = 21
2 suffices

! Observation predicates: constraints over the observable clocks
! decision predicate y ≤ 6 (decide which action should be taken)
! action point y = 21

2 (when a controllable action can be taken)

How to Find Observation Predicates?

! Manually fix a finite set of observable predicates

! Refine granularity by brute-force enumeration 1, 1
2 ,

1
4 , . . .?

Not a good idea:

0

y ≤ 1

1

y ≤ 1

2

y ≤ 1

. . . 999

y ≤ 1

1000

y := 0

y ≥ 1

y := 0

y ≥ 1

y := 0

y ≥ 1

y := 0

y ≥ 1

y := 0

y ≥ 1

CEGAR

infinite-state system

abstract with predicates

finite-state system

verify

abstract counterexample

path

analyze
counterexample

refine with
predicates

correct

error

concretizable

spurious

[Clarke et al., 2000]

CEGAR for Games

infinite-state game

abstract with predicates

finite-state game

solve
game

abstract counterexample

strategy for Player∀

analyze
counterexample

refine with
predicates

abstract strategy
for Player∃

uncontrollable

concretizable

spurious

[Henzinger et al., 2003]

CEGAR for Games with Incomplete Information

finite-choice infinite-state game

with incomplete information

abstract with predicates

finite-state game

with perfect information

solve
game

abstract counterexample

strategy for Player∀

analyze
counterexample

refine with
predicates

abstract strategy
for Player∃

uncontrollable

concretizable

spurious

[DF, 2008]

Counterexample-Guided Synthesis of Observations

infinite-state game F(G, ξ)

with incomplete information

abstract with predicates

finite-state game Ga

with perfect information

solve
game

abstract counterexample

strategy for Player∀

analyze
counterexample

refine with
predicates

abstract strategy
for Player∃

analyze
counterexample

concretizable
in F(G, ξ)

refine with
action points

abstract with
action points ξ

infinite-state game G

with incomplete information

uncontrollable

spurious

concretizable
in G

spurious

Overview

infinite-state game F(G, ξ)

with incomplete information

abstract with predicates

finite-state game Ga

with perfect information

solve
game

abstract counterexample

strategy for Player∀

analyze
counterexample

refine with
predicates

abstract strategy
for Player∃

analyze
counterexample

concretizable
in F(G, ξ)

refine with
action points

abstract with
action points ξ

infinite-state game G

with incomplete information

uncontrollable

spurious

concretizable
in G

spurious

The Synthesis Problem

On

x ≤ 0

Produce1

x ≤ 6

Sensed1

x ≤ 10

Piston1

Produce2

x ≤ 8

Sensed2

x ≤ 10

Piston2

Off

End

x := 0

x := 0

x ≥ 4 x ≥ 9

arm1?
x ≥ 11

x ≥ 7 x ≥ 9

arm2?
x ≥ 11

y ≤ 21
2

y ≤ 21
2

y ≤ 6
(O → S)?

(O → S)?
y > 6

y ≥ 21
2

arm1!

arm2!

y ≥ 21
2

Plant P
! unobservable clocks Xu

! Xu = {x}

! observable clocks Xo

! Xo = ∅

! equivalence on locations
F = {Off}, E = {Err},
O = {On,Produce1,Produce2},
S = {Sensed1,Sensed2,Piston1,Piston2}

Controller C
! own set of clocks Xc

! Xc = {y}

! controllable actions Σc

(uncontrollable Σu)
! Σc = {arm1,arm2}

! observes transitions
! (O → S), . . .

The Synthesis Game

! Two-player infinite-state games with incomplete information

! Player∃ represents the controller, Player∀ the environment (plant)

! Safety objective encodes safety timed controller synthesis

Symbolic Game Representation

Variables updated by Player∃:

! finite-range: t , V<∞
∃

= {act ,wait , reset}

! symbolic constants: V∞
∃

= {cx | x ∈ Xo+c} (Xo+c = Xo∪̇Xc)

Transition relation for Player∃:

! choose to remain idle and let time elapse

! choose to reset a set of controllable clocks

! choose to execute an action in Σc immediately

! choose to execute an action in Σc after a delay

y2

y1
c′

y1

t

¬t ′ act ′ ∈ Σc wait ′ reset ′ = ∅
∃x ∈ Xo+c. c′

x > 0
∀x ∈ Xo+c. c′

x > 0 → c′
x > x

Symbolic Game Representation

Variables updated by Player∀:

! observable by Player∃: t ,V o
∀
= Xo∪̇Xc∪̇{oloc, reset_enabled}

! unobservable by Player∃: V u
∀
= Xu∪̇{loc, delay_enabled}

Transition relation for Player∀:

! execute an enabled uncontrollable action

! execute the controllable action chosen by Player∃
¬t (¬wait ∨ ¬delay_enabled) act = σ (loc, v)

σ
→ (loc′, v ′)

t ′ oloc′ = [loc′] reset_enabled ′ delay_enabled ′

! let time elapse by making a delay transition

! reset the controllable clocks chosen by Player∃
! give the turn to Player∃ to make a move

! do a skip transition leaving all variables unchanged

Symbolic Game Representation

Transition relation for Player∀:

! execute the controllable action chosen by Player∃
! execute an enabled uncontrollable action

! let time elapse by taking a delay transition

¬t wait delay_enabled σ ∈ R>0 (loc, v)
σ
→ (loc′, v ′)

¬t ′ oloc′ = oloc ∀x ∈ Xc. x ′ = x + σ

(act ̸= ⊥ → ∀x ∈ Xo+c. x < cx → x ′ < cx)

¬t wait delay_enabled σ ∈ R>0 (loc, v)
σ
→ (loc′, v ′)

¬t ′ oloc′ = oloc ∀x ∈ Xc. x ′ = x + σ

(act ̸= ⊥ → ∀x ∈ Xo+c. x < cx → x ′ ≤ cx)
¬delay_enabled ′ (act ̸= ⊥ → ∃x ∈ Xo+c. cx > 0 ∧ x ′ ≥ cx ∧ x < cx)

! reset the controllable clocks chosen by Player∃
! give the turn to Player∃ to make a move

! do a skip transition leaving all variables unchanged

Strategies

! Strategy:
maps a prefix of a play (sequence of variable valuations) to
a successor valuation of the variables updated by the player,
which must result in a successor state for the last state

! Winning strategy:
achieves the objective (e.g., avoid or reach a given set of
(error) states) regardless of the opponent’s behavior

! A strategy for Player∃ must be consistent:
reacts in the same way for prefixes that agree on the
valuations of the variables that Player∃ can observe

The definition of the game guarantees that Player∃ does not gain
information from observing individual moves of Player∃ other than
those that correspond to observable transitions in the plant P.

Control Strategies

winning strategy for Player∃
⇔

control strategy to avoid error location

Strategy for Player∃ with

! finite set of memory states

! finite set of outputs

! rectangular or diagonal observations

can be transformed into a controller automaton

Overview

infinite-state game F(G, ξ)

with incomplete information

abstract with predicates

finite-state game Ga

with perfect information

solve
game

abstract counterexample

strategy for Player∀

analyze
counterexample

refine with
predicates

abstract strategy
for Player∃

analyze
counterexample

concretizable
in F(G, ξ)

refine with
action points

abstract with
action points ξ

infinite-state game G

with incomplete information

uncontrollable

spurious

concretizable
in G

spurious

Abstraction Steps

infinite-state game G

with incomplete information

abstract with
action points ξ

infinite-state game F(G, ξ)

with incomplete information

abstract with
predicates AP

finite-state game Ga

with perfect information

1. fix a finite set of action points ξ

! restrict the timing precision of
the controllable actions

! the resulting nondeterminism is
resolved by Player∀

2. abstract the game w.r.t. a finite

set of abstraction predicates AP

! fix/restrict the (observation)
power of Player∃

! overapproximate the possible
behaviors of Player∀

Fixing the Action Points

! ξ(y) ⊂ Q>0 – finite set of action points for each clock y ∈ Xo+c

! In G, Player∃ can choose when a controllable action will be executed

! In F(G, ξ), Player∃ can choose to execute the action immediately or
within a certain interval determined by the current clock values and ξ

y2

y1
c′

y1

G
y2

y1

c2

c1

F(G, ξ)

! Construct F(G, ξ) from G by

! removing the variables V∞
∃

= {cx | x ∈ Xo+c}
! adjusting the transition relations accordingly (using ξ)

Fixing the Action Points
Game with fixed action points F(G, ξ)

Variables updated by Player∃: t , V<∞
∃

= {act ,wait , reset}

! Player∃ chooses to execute an action in Σc after a delay

t

¬t ′ act ′ ∈ Σc wait ′ reset ′ = ∅

! Player∀ lets time elapse by making a delay transition

¬t wait delay_enabled σ ∈ R>0 (loc, v)
σ
→ (loc′, v ′)

¬t ′ oloc′ = oloc ∀x ∈ Xc. x ′ = x + σ

(∀x ∈ Xo+c. ∀c ∈ ξ(x). x < c → x ′ < c)
delay_enabled ′ ∈ {true, false}

¬t wait delay_enabled σ ∈ R>0 (loc, v)
σ
→ (loc′, v ′)

¬t ′ oloc′ = oloc ∀x ∈ Xc. x ′ = x + σ

(∀x ∈ Xo+c. ∀c ∈ ξ(x). x < c → x ′ ≤ c)
¬delay_enabled ′ (∃x ∈ Xo+c. ∃c ∈ ξ(x). x ′ ≥ c ∧ x < c)

Abstraction Steps

infinite-state game G

with incomplete information

abstract with
action points ξ

infinite-state game F(G, ξ)

with incomplete information

abstract with
predicates AP

finite-state game Ga

with perfect information

1. fix a finite set of action points ξ

! restrict the timing precision of
the controllable actions

! the resulting nondeterminism is
resolved by Player∀

2. abstract the game w.r.t. a finite

set of abstraction predicates AP

! fix/restrict the (observation)
power of Player∃

! overapproximate the possible
behaviors of Player∀

Predicate Abstraction

Abstraction predicates

! AP – finite set of abstraction predicates over all variables

! valuation a – boolean vector with one element for each predicate in AP

Goal: overapproximate the observation equivalence relation

Abstract states are sets of valuations

which have the same values for the observable predicates in AP

Example:

AP = {x = 0, y ≤ 1}

in a0, x = 0 is false

in a1, x = 0 is true
y ≤ 1 is true

a0 a1

A

Predicate Abstraction

Goal: give more power to Player∀, restrict the power of Player∃

For Player∀

(A,A′) ∈ T a
∀

if there exist states
s for A and s′ for A′:
(s, s′) ∈ TF

∀

A A′

For Player∃

(A,A′) ∈ T a
∃

if for every s for A
there exists s′ for A′:
(s, s′) ∈ TF

∃

A A′

Sound Abstraction

winning strategy for Player∃ in Ga

⇒
consistent winning strategy for Player∃ in G

Overview

infinite-state game F(G, ξ)

with incomplete information

abstract with predicates

finite-state game Ga

with perfect information

solve
game

abstract counterexample

strategy for Player∀

analyze
counterexample

refine with
predicates

abstract strategy
for Player∃

analyze
counterexample

concretizable
in F(G, ξ)

refine with
action points

abstract with
action points ξ

infinite-state game G

with incomplete information

uncontrollable

spurious

concretizable
in G

spurious

Refinement Steps

abstract counterexample

strategy for environment

analyze
counterexample

w.r.t. F(G, ξ)

refine with
predicates

analyze
counterexample

w.r.t. G

refine with
action points

uncontrollable

spurious concretizable

concr.spurious

1. New abstraction predicates for AP

! are computed using interpolation

! to refine the abstract transition and
observation equivalence relations

2. New action points for ξ

! are extracted from witnesses for
satisfiability of the negation of a
formula characterizing
concretizability in the game G

! to allow for better timing precision
of controllable actions

Abstract Counterexample

Abstract counterexample C:
! branches according to all

abstract successors of the
states belonging to Player∃

! root: initial state

! leaves: error states

Abstract Counterexample Analysis for F

TF (C) ∃V o
∀

0,V<∞
∃

0

∃V o
∀

2

∃V o
∀

4

∃V o
∀

5

∃V u
∀

0,V u
∀

1,V u
∀

2, . . .

Tree formula TF (C)

The abstract counterexample C is concretizable in F

⇔

the tree formula TF (C) is satisfiable.

Abstract Counterexample Analysis for F

TF (C) ∃V o
∀

0,V<∞
∃

0

∀V<∞
∃

1 −→ eliminate via ∧

∃V o
∀

2

∀V<∞
∃

3 −→ eliminate via ∧

∃V o
∀

4

∃V o
∀

5

∃V u
∀

0,V u
∀

1,V u
∀

2, . . .

Tree formula TF (C)

! τ1, τ2, . . .: finite sequences of valuations of the variables V<∞

∃

! since the domain of V<∞

∃
is finite, finitely many sequences for C

! tree formula TF (C) = F (C, τ1) ∧ . . . ∧ F (C, τn)

Refining the Predicate Abstraction

Case I: Abstract transition relation too coarse

! Some TF (C, τ) is not satisfiable

! Find interpolant by splitting τ into prefix and suffix in the usual way.

Case II: Abstract observation equivalence too coarse

! Each of TF (C, τ1) and TF (C, τ2) is satisfiable,
TF (C, τ1) ∧ TF (C, τ2) not

! Compute interpolant I: TF (C, τ1) ⇒ I and I ∧ TF (C, τ2)
unsatisfiable

! I is over shared variables and, thus, only observable variables

Refinement Steps

abstract counterexample

strategy for environment

analyze
counterexample

w.r.t. F(G, ξ)

refine with
predicates

analyze
counterexample

w.r.t. G

refine with
action points

uncontrollable

spurious concretizable

concr.spurious

1. New abstraction predicates for AP

! are computed using interpolation

! to refine the abstract transition and
observation equivalence relations

2. New action points for ξ

! are extracted from witnesses for
satisfiability of the negation of a
formula characterizing
concretizability in the game G

! to allow for better timing precision
of controllable actions

Abstract Counterexample Analysis for G

QTF (C) ∃V o
∀

0,V<∞
∃

0
,V∞

∃

0

∀V<∞
∃

1
,V∞

∃

1

∃V o
∀

2

∀V<∞
∃

3
,V∞

∃

3

∃V o
∀

4

∃V o
∀

5

∃V u
∀

0,V u
∀

1,V u
∀

2, . . .

Quantified tree formula QTF (C)

The abstract counterexample C is concretizable in G

⇔

the quantified tree formula QTF (C) is satisfiable.

Abstract Counterexample Analysis for G

QTF (C) ∃V o
∀

0,V<∞
∃

0
,V∞

∃

0

∀V<∞
∃

1
,V∞

∃

1

∃V o
∀

2

∀V<∞
∃

3
,V∞

∃

3

∃V o
∀

4

∃V o
∀

5

∃V u
∀

0,V u
∀

1,V u
∀

2, . . .

Quantified tree formula QTF (C)

QTF (C) = . . . ∀V∞
∃

n. . . . unsatisfiable

⇔

Φ = ¬QTF (C) = . . . ∃V∞
∃

n . . . satisfiable

Computing Action Points

Restriction on the witness functions for V∞
∃

! for k ∈ N>0, Φk requires that Φ is satisfied and for each block ∃V∞
∃

n

! there are constants a1, . . . ,ak such that the witness function selects
one of them and a corresponding variable in each of k cases

y2

y1
a1 a2

a3

a1 = 3, variable y1

a2 = 6, variable y1

a3 = 1, variable y2

yn
1 ∈ [0, 2) 1→ cn

y1
= 3, cn

y2
= 0

yn
1 ∈ [2, 4) 1→ cn

y1
= 0, cn

y2
= 1

yn
1 ∈ [4, 5] 1→ cn

y1
= 6, cn

y2
= 0

Computing Action Points

Strengthening Φ

! strengthening for k ∈ N>0

! free variables for action points and corresponding variable indices

Refinement procedure

! Start with k = 1 and iterate incrementing k while Φk is unsatisfiable

! If some Φk is satisfiable, then extract the action points from model

Progress

If the loop terminates, the action points in ξ′ suffice to eliminate from F(I, ξ′)
all winning strategies for Player∃ that are subsumed by fe.

Overview

infinite-state game F(G, ξ)

with incomplete information

abstract with predicates

finite-state game Ga

with perfect information

solve
game

abstract counterexample

strategy for Player∀

analyze
counterexample

refine with
predicates

abstract strategy
for Player∃

analyze
counterexample

concretizable
in F(G, ξ)

refine with
action points

abstract with
action points ξ

infinite-state game G

with incomplete information

uncontrollable

spurious

concretizable
in G

spurious

Experimental Results

! Experiments with a prototype implementation

! Problem is out of the scope of state-of-the-art tools for timed controller
synthesis ⇒ no fully relevant comparison possible

! UPPAAL-TIGA: timed games with partial observability and fixed
observable predicates, two examples from [CDLLR07]

! Compare to UPPAAL-TIGA using fixed granularity (observable predicates
0 ≤ y < 1, or, respectively, 0 ≤ y < 0.5 scaled accordingly)

! Scale examples to demonstrate the advantage of our approach over
using fine granularity instead of (automatically) discovered predicates

Experimental Results

A. Strategy Act. Points Obs. Preds Time (s) TIGA (s)

Paint 55 2 16 72.44 0.08
Paint-100 49 2 15 29.52 3.57
Paint-1000 49 2 15 29.57 336.34
Paint-10000 71 2 16 52.82 > 1800
Paint-100000 71 2 16 52.21 > 1800

Bricks 166 3 17 24.69 0.05
Bricks-100 174 3 17 24.43 2.63
Bricks-1000 174 3 17 24.21 302.08
Bricks-10000 154 3 17 24.62 > 1800
Bricks-100000 174 3 17 24.00 > 1800

Conclusions

! Counterexample-guided synthesis of observation predicates
! Two nested refinement loops:

! analytical inner loop, computes decision predicates
based on interpolation

! constructive outer loop, computes action points
based on witnesses of satisfiability

! Automatic synthesis of timed controllers with partial observation

! Pattern for reactive synthesis under incomplete information

