

Beyond SAT and SMT Automated Reasoning Building Blocks

Learn Fresh

Christoph Weidenbach

Reasoning Systems

Key Isabelle Coq PVS KeYmaera VCC

Automated Reasoning Systems

beagle SPA			SPASS(T)		
		princess iSAT			
SPASS			Z3	CVC4	Barcelogic
E	Vampire			Sat Yic	
		MiniSat	Linge		
		Sat4j	zCha		

DPLL 1962

$$
\begin{aligned}
& \neg P \vee \neg Q \vee R \\
& \neg P \vee Q \\
& \neg P \vee \neg R \\
& P \vee R
\end{aligned}
$$

Automated Reasoning Building Blocks

Bachmair Ganzinger Superposition 1990

$$
\begin{array}{ll}
\neg P \vee \square Q \vee R & \text { total ordering on literals: } R \prec \neg R \prec P \prec \neg P \prec Q \prec \neg Q \\
\neg P \vee Q & \text { model assumption: } \neg R, P^{P \vee R}, Q^{\neg P \vee Q} \\
\neg P \vee \neg R & \\
P \vee R &
\end{array}
$$

$$
\frac{\neg P \vee \neg Q \vee R \quad \neg P \vee Q}{\neg P \vee R}
$$

$$
\begin{gathered}
\neg P \vee R \\
\hline R \\
\hline \underline{n}
\end{gathered}
$$

$$
\neg P \vee \neg Q \vee R \quad \neg P \vee R
$$

$$
\neg P \vee Q \quad R
$$

$$
\neg P \vee \neg R
$$

$$
P \vee R
$$

model assumption：$\neg R, P^{P \vee R}$
model assumption：R, \ldots

Bachmair Ganzinger 1990 Continued

$\neg P \vee \neg Q \vee R \quad$ total ordering on literals: $R \prec \neg R \prec P \prec \neg P \prec Q \prec \neg Q$
$\neg P \vee Q$
$\neg P \vee \neg R$
$P \vee R \quad$ C redundant if $D_{1}, \ldots, D_{n} \models C$ and $D_{i} \prec C$
$\neg P \vee R$
R
$\neg P \vee R$ because implied by R and $R \prec \neg P \vee R$
$P \vee R$ because implied by R and $R \prec P \vee R$
$\neg P \vee \neg Q \vee R$ because implied by R and $R \prec \neg P \vee \neg Q \vee R$
$\neg P \vee Q$
$\neg P \vee \neg R$
R
$\neg P \vee Q$ because implied by $R, \neg P \vee \neg R$ and $R, \neg P \vee \neg R \prec \neg P \vee Q$
$\neg P \vee \neg R$
R

Fresh Learning Theorem

Automated Reasoning Building Blocks

CDCL 2000－today

$$
\begin{aligned}
& \neg P \vee \neg Q \vee R \\
& \neg P \vee Q \\
& \neg P \vee \neg R \\
& P \vee R
\end{aligned}
$$

Propagate
$Q \quad \neg P \vee Q$

$P \quad P \vee R$

Conflict Resolution R
Conflict Resolution

Conflict

$$
\neg P \vee \neg Q \vee R
$$

CDCL enjoys the fresh learning theorem．

CDCL Ordering Change

ordering so far $Q_{1} \prec Q_{2} \prec P_{3} \prec P_{4} \prec Q_{5} \prec \ldots$
after conflict resolution $P_{i} \prec Q_{j}$ for all P_{i} involved in the conflict
bonus for all literals involved in the conflict，penalty for the others

Automated Reasoning Building Blocks

Dynamically Changing the Ordering

- finitely often, no problem
- for otherwise no completeness, termination

$$
\begin{aligned}
& \frac{P \vee \neg Q \quad Q \vee R}{P \vee R} R \prec P \prec Q \\
& \text { but } P \vee R \text { is redundant with ordering } Q \prec P \prec R
\end{aligned}
$$

But why does this work for CDCL?

- use redundancy notion invariant to ordering changes (length)
- provide a different ordering for completeness (total number of clauses)

Computational Aspects

Model Representation M
Sequence of literals $M=\neg R, P, Q$
Propagation: for some clause $[\neg] P \vee C$ decide $M \not \vDash C, P$ undefined

$$
M=\neg R, P \text { clause } \neg P \vee Q \text { propagates } Q
$$

Conflict: for some clause C decide $M \not \vDash C$

$$
M=\neg R, P, Q \text { clause } \neg P \vee \neg Q \vee R \text { is false }
$$

Conflict Resolution: compute consequences out of false clause

Redundancy: decide $D_{1}, \ldots, D_{n} \models C$
For first-order logic not effective in general.

Jovanovic, de Moura 2012: Polynomials

Set of polynomials $3 x_{1}^{3} x_{2}+5 x_{3}^{6} x_{1} x_{2} \leq 0$ find a solution.
Model Representation M : assignment of values to x_{1}, \ldots, x_{k}
Propagation: $M=a_{1}, \ldots, a_{k}$ polynomial in x_{1}, \ldots, x_{k+1} compute a_{k+1}
Conflict: $M=a_{1}, \ldots, a_{k}$ violate some disequation

Conflict Resolution: use CAD to learn the conflict cell

The calculus enjoys the fresh learning theorem.

Finite Domain FOL(T)

Is a first-order clauses set over LA and some finite domain a_{1}, a_{2} satisfiable?

Clause: $P(x, y) \vee 3 x+2 y>0$

Clauses:

$$
\begin{aligned}
& P\left(a_{1}, a_{1}\right) \vee 3 a_{1}+2 a_{1}>0 \\
& P\left(a_{1}, a_{2}\right) \vee 3 a_{1}+2 a_{2}>0 \\
& P\left(a_{2}, a_{1}\right) \vee 3 a_{2}+2 a_{1}>0 \\
& P\left(a_{2}, a_{2}\right) \vee 3 a_{2}+2 a_{2}>0
\end{aligned}
$$

Grows exponentially in number of different variables
For three different variables and n elements n^{3} may get too large.
Reasoning with $P(x, y) \vee 3 x+2 y>0$ can be exponentially better.

Alagi, Weidenbach: Finite Domain FOL(T) 2012-

First-order clause set over some finite domain a_{1}, \ldots, a_{k}, satisfiable?

Model Representation M : sequence of constrained literals $(P(x, y), x \neq y))$

Propagation: for some clause $[\neg] A \vee C$ decide $M \not \vDash C \sigma, A \sigma$ undefined

Conflict: for some clause C decide $M \not \models C \sigma$

Conflict Resolution: compute consequences out of false clause

Redundancy: decide $D_{1}, \ldots, D_{n} \models C \sigma$

The calculus enjoys the fresh learning theorem.
Working on practically efficient algorithms.

Automated Reasoning Building Blocks

Thanks for your attention!

