

Beyond SAT and SMT Automated Reasoning Building Blocks

Learn Fresh

Christoph Weidenbach

November 22, 2013

Reasoning Systems

Bachmair Ganzinger Superposition 1990

 $\neg P \lor \neg Q \lor R$ total ordering on literals: $R \prec \neg R \prec P \prec \neg P \prec Q \prec \neg Q$ $\neg P \lor Q$ model assumption: $\neg R, P^{P \lor R}, Q^{\neg P \lor Q}$ $\neg P \lor \neg R$ $P \lor R$ $\frac{\neg P \lor \neg Q \lor R \quad \neg P \lor Q}{\neg P \lor R}$ model assumption: $\neg R$, $P^{P \lor R}$ $\begin{array}{c|c} \neg P \lor R \\ \hline R \\ \end{array} \quad P \lor R \\ \hline \end{array}$ model assumption: R, \ldots $\neg P \lor \neg Q \lor R \quad \neg P \lor R$ $\neg P \lor Q$ R $\neg P \lor \neg R$ $P \lor R$

max planck institut informatik

Bachmair Ganzinger 1990 Continued

 $\neg P \lor \neg Q \lor R$ total ordering on literals: $R \prec \neg R \prec P \prec \neg P \prec Q \prec \neg Q$ $\neg P \lor Q$ model assumption: R, \ldots $\neg P \lor \neg R$ C redundant if $D_1, \ldots, D_n \models C$ and $D_i \prec C$ $P \lor R$ $\neg P \lor R$ R $\neg P \lor R$ because implied by R and $R \prec \neg P \lor R$ $P \lor R$ because implied by R and $R \prec P \lor R$ $\neg P \lor \neg Q \lor R$ because implied by R and $R \prec \neg P \lor \neg Q \lor R$ $\neg P \lor Q$ $\neg P \lor \neg R$ R $\neg P \lor Q$ because implied by $R, \neg P \lor \neg R$ and $R, \neg P \lor \neg R \prec \neg P \lor Q$ $\neg P \lor \neg R$ R

CDCL 2000-today

$$\neg P \lor \neg Q \lor R$$
$$\neg P \lor Q$$
$$\neg P \lor \neg R$$
$$P \lor R$$

 $\bigcirc R$

Conflict Resolution

R

Conflict

 $\neg P \lor \neg Q \lor R$

CDCL enjoys the fresh learning theorem.

CDCL Ordering Change

ordering so far $Q_1 \prec Q_2 \prec P_3 \prec P_4 \prec Q_5 \prec \dots$

after conflict resolution $P_i \prec Q_j$ for all P_i involved in the conflict

bonus for all literals involved in the conflict, penalty for the others

Dynamically Changing the Ordering

- finitely often, no problem
- for otherwise no completeness, termination

$$\frac{P \lor \neg Q \qquad Q \lor R}{P \lor R} \quad R \prec P \prec Q$$

but $P \lor R$ is redundant with ordering $Q \prec P \prec R$

But why does this work for CDCL?

- use redundancy notion invariant to ordering changes (length)
- provide a different ordering for completeness (total number of clauses)

Computational Aspects

Model Representation ${\cal M}$

Sequence of literals $M = \neg R, P, Q$

Propagation: for some clause $[\neg]P \lor C$ decide $M \not\models C$, P undefined

 $M=\neg R,\,P$ clause $\neg P\vee Q$ propagates Q

Conflict: for some clause C decide $M \not\models C$

 $M = \neg R, P, Q$ clause $\neg P \lor \neg Q \lor R$ is false

Conflict Resolution: compute consequences out of false clause

Redundancy: decide $D_1, \ldots, D_n \models C$

For first-order logic not effective in general.

max planck institut informatik

Jovanovic, de Moura 2012: Polynomials

Set of polynomials $3x_1^3x_2 + 5x_3^6x_1x_2 \le 0$ find a solution.

Model Representation M: assignment of values to x_1, \ldots, x_k

Propagation: $M = a_1, \ldots, a_k$ polynomial in x_1, \ldots, x_{k+1} compute a_{k+1}

Conflict: $M = a_1, \ldots, a_k$ violate some disequation

Conflict Resolution: use CAD to learn the conflict cell

The calculus enjoys the fresh learning theorem.

Finite Domain FOL(T)

Is a first-order clauses set over LA and some finite domain a_1, a_2 satisfiable?

Clause: $P(x, y) \lor 3x + 2y > 0$

Clauses:

$$\begin{array}{l}
P(a_1, a_1) \lor 3a_1 + 2a_1 > 0 \\
P(a_1, a_2) \lor 3a_1 + 2a_2 > 0 \\
P(a_2, a_1) \lor 3a_2 + 2a_1 > 0 \\
P(a_2, a_2) \lor 3a_2 + 2a_2 > 0
\end{array}$$

Grows exponentially in number of different variables

For three different variables and n elements n^3 may get too large.

Reasoning with $P(x, y) \vee 3x + 2y > 0$ can be exponentially better.

Alagi, Weidenbach: Finite Domain FOL(T) 2012-

First-order clause set over some finite domain a_1, \ldots, a_k , satisfiable? Model Representation M: sequence of constrained literals $(P(x, y), x \neq y))$ Propagation: for some clause $[\neg]A \lor C$ decide $M \not\models C\sigma$, $A\sigma$ undefined Conflict: for some clause C decide $M \not\models C\sigma$ Conflict Resolution: compute consequences out of false clause Redundancy: decide $D_1, \ldots, D_n \models C\sigma$

The calculus enjoys the fresh learning theorem. Working on practically efficient algorithms.

Thanks for your attention!

