Computational Modeling and Analysis For Complex Systems NSF Expedition in Computing

CMACS: AFIB Challenge

CMACS

Radu Grosu

Stony Brook University

http://cmacs4heart.pbworks.com/

2nd Year Review Meeting, Carnegie Mellon University November 3, 2011

Team So Far: CMACS Atrial-Fibrillation

Scott Smolka Stony Brook

Cornell

Radu Grosu Stony Brook

Ezio Bartocci Abhishek Murthy Stony Brook Stony Brook

Ariful Islam

Stony Brook

Klaus Havelund NASA

Gerard Holzmann NASA

James Glimm

Stony Brook

Robert Gilmour Cornell

Elizabeth Cherry Cornell

Oded Maler Verimag

Gregory Batt Inria

Nancy Griffeth CUNY

Colas Le Guernic NYU

Patrick Cousot NYU

Goals: AFIB-Challenge

Model, Predict and Control Cardiac Arrhythmias In particular Atrial and Ventricular Fibrillation

Extend developed tools and techniques for the Other CMACS Challenges and for any Hybrid System

Results: CMACS-AFIB

CMACS Specific Results

- 1st GPU-based 2D and 3D simulation of all important human cardiac models
- 1st automatic parameter-range identification for abnormal behavior in cardiac cells
- 1st GPU-based curvature analysis and classification of abnormal cardiac behavior
- 1st Low energy defibrillation of atrial and ventricular tissue in vitro and in vivo

Cross-Cutting Fundamental Results

- An optimal linearization algorithm of for nonlinear experimental data signals
- GPU-techniques for real-time simulation of nonlinear partial-differential equations
- Robust verification and PR identification for MHA and time-dependent properties
- Distributed control algorithms for nonlinear systems with stiff PDE
- Optimal model repair techniques for discrete- and continuous-time Markov Chains
- Techniques for checking ε-bisimulation among continuous-time MDPs
- Development of a time-frequency logic to better capture signal properties
- Improve time-space performance of verification tools with GPU-Mutlicore techniques

Motivation: AFIB-Challenge

Normal Heart Beat

Atrial Fibrillation

Heart disease is one of the leading causes of death in the world.

Ranks number one in industrialized countries.

In the USA alone:

- 1/3 of total deaths are due to heart disease.
- 1 in 5 people have some form of heart disease.
- 4.5 million do not die but are hospitalized every year.
- Economic impact: \$214 billion a year.

Motivation: CDC / Statistics

National Vital Statistics Report, Vol.49, No.11, October 12, 2006 Deaths and percent of total deaths for the 10 leading causes of death: United States

Rank	Cause of death	Total Deaths	Percentage
	All causes	2,391,399	100.0
1	Diseases of heart	725,192	30.3
2	Malignant neoplasms	549,838	23.0
3	Cerebrovascular diseases	167,366	7.0
4	Chronic lower respiratory diseases	124,181	5.2
5	Accidents (unintentional injuries)	97,860	4.1
6	Diabetes mellitus	68,399	2.9
7	Influenza and pneumonia	63,730	2.7
8	Alzheimer's disease	44,536	1.9
9	Nephritis, nephrotic syndrome and nephrosis	35,525	1.5
10	Septicemia	30,680	1.3
	All other causes	484,092	20.2

http://www.cdc.gov/nchs/data/nvsr/nvsr57/nvsr57_14.pdf

Background: Types of Arrhythmias

- Arrhytmias occur in upper chambers (atria) or lower chambers (ventricles) or both
- Heart rate may be increased or decreased
- May result from pacemaker dysfunction or breakdown of electrical activity (reentry)
- Some arrhymias are of genetic nature
- Arrhytmias may be asymptomatic or they may be immediately life-threatening

Background: Problems Studying AFIB

Complicated structure

Canine heart (MRI @120 microns resolution)

Canine heart (DTMRI @ 250 microns resolution)

Pittsburgh NMR Center for Biomedical Research

Background: From Experiment to Model

Modeling: Towers of Abstraction for Analysis of Cardiac Abnormalities

Minimal Model as a Nonlinear Hybrid Automaton

2D and 3D Simulation of Partial Differential Equations

$$\dot{u} = \nabla (D\nabla u) - (J_{fi} + J_{si} + J_{so})$$

PDEs are simulated as Finite Difference Equations

Minimal Model as a Nonlinear Hybrid Automaton

Optimal Linearization of Nonlinear Terms

12

Modeling: From MM Hybrid Automaton to the Multi-Affine Hybrid Automaton

The Multi-Affine Hybrid Automaton

Comparison in 1D

Comparison in 2D

These results appeared this year in CAV'11, LNCS 6806, pp. 396-411, 2011

Modeling: Approximating the Sodium Current of the Iyer Model

Analysis: Real Time Simulation with NVIDIA Graphical Processing Units

Minimal Model in Four State Variables (4V)

Zoo of Spirals Computed by Students at CMACS Seminar

Beeler-Reuter (8 V) Ten-Tusscher-Panfilov (19V) Iyer (65 V)

These results appeared this year in CMSB 2011, pages 103-110, ACM, 2011 Advances in Physiology Education 35: 1-11, 2011

Web Graphics Language (Fenton-Karma 2V)

Runs in your Browser and uses your GPU

3D Model of a Rabbit Heart (Fenton-Karma 3V Model)

3D Model of a Pig Heart (Fenton-Karma 3V Model)

These results are work in progress

Spiral Wave Induced by Unexcitable Myocytes

Computation of transitions: By examining corner flows

Genetic regulatory network with Parameters κ, γ

$$\dot{x}_i = f_i(x,p) = \sum_{j \in P_i} \kappa_{ij} r_{ij}(x) - \sum_{j \in D_i} \gamma_{ij} r_{ij}(x) x_i$$

Property to Check and Uncertain Parameters

$$G(u < \theta_v), g_{o_1} \in [0, 180], g_{o_2} \in [0, 10], g_{o_2} \in [0, 10], g_{o_2} \in [0, 10]$$

Computation of transitions: By examining corner flows

Genetic regulatory network with Parameters κ, γ

$$\dot{x}_i = f_i(x,p) = \sum_{j \in P_i} \kappa_{ij} r_{ij}(x) - \sum_{j \in D_i} \gamma_{ij} r_{ij}(x) x_i$$

1st automatic parameter-range identification of abnormal behavior

These results appeared this year in CAV 2011, LNCS 6806, pp. 396-411, 2011.

Analysis: Parameter-Range Inference with Time-dependence in SpaceRover

Analysis: Parameter-Range Inference with Time-dependence in SpaceRover

Analysis: Spiral Classification Algorithm for Isotropic Diffusion

For what parameter ranges does MHA accurately reproduce the cardiac disorder ?

Setting: MHA simulation on 1024X1024 grid under isotropic diffusion

 θ_0

Parameter Identification =	Principled Parameter-space + partitioning	Using wa	Bad behavior ve curvature – S Algorithm	detection Spiral Classification (SCA)
Why wave curvature: $\theta = \theta_0$	$-\frac{D}{r}$	>	>	>
θ = curved wave propagation v	>		*	
θ_0 = flat wave propagation velo	>	>	>	
D = constant based on propertr = radius of curvature	es of medium	>	>	> +>
Wave break (fibrillation) at critical r	adius: $r_c = \frac{D}{2}$	$\theta = \theta_0$	$\theta < \theta_0$	$\theta > \theta_0$

CASE STUDY: Spiral re-entry with circular core.

CASE STUDY: Spiral reentry with linear core. 22

Analysis: GPU / Multi-core Model Checking

Optimizing Spin software model checker with GPU / Multi-cores

- Exploring and comparing OpenCL/CUDA technologies
- Developing GPU-based efficient hashing algorithms
- Developing a GPU-based State Exploration Engine
- Developing a GPU-based State Verification Engine

Optimizing SAT/SMT solvers with GPU / Multi-cores

SMT solvers seem most promising

This is work in progress

Control: Termination of Arrhythmias with Low Energy Defibrillation

Atria: Atrial fibrillation (AF) is the most common tachyarrhythmia worldwide.

Ventricle: Ventricular fibrillation (VF) is the leading cause of death in the US.

Based in concepts of complex systems and nonlinear dynamics we have developed a method to terminate reentrant arrhythmias in both atria and ventricles uses much lower energies compared to standard defibrillators (up to 360J [1000V, 30-45 Amps] which not only are very painful, they can damage cardiac tissue)

Termination by synchronization using multiple low energy shocks rather than one big one.

Computer simulation (proof of principle)

In vivo atrial fibrillation termination

Defibrillation with 90% energy reduction 24

Control: Termination of Arrhythmias with Low Energy Defibrillation

Low Energy Defibrillation (LEAP) tested for Canine Hearts

For Both AF and VF we have found successful defibrillation with LEAP using about10% of the energy required by the standard 1 shock defibrillation protocol

Furthermore, using high resolution mCT

We obtained detail vessel distribution of the heart and found a scaling law which was used to obtain a theory that explains the mechanism behind LEAP.

These results appeared this year in Nature Jul 13;475(7355):235-9; 2011

Control: Model Repair for Discrete-Time Markov Chains

Knuth & Yao fair die problem

When is Model Repair not feasible?

Property to Satisfy

$$\mathcal{P}_{\leq 1/8}F[die = 1]$$

Optimization Constraint to Satisfy and Transfer Function

$$\begin{split} \min \, w_1 v_1^2 + w_2 v_2^2 + w_3 v_3^2 \\ \frac{8 v_1 v_2 v_3 - 4 (v_2 v_1 - v_2 v_3 - v_1 v_3) - 2 (v_1 + v_2 - v_3) - 1}{8 v_2 v_3 + 4 v_2 + 4 v_3 - 6} - \frac{1}{8} \leq 0 \\ \forall i \in \{1, \cdots, 3\}, -0.5 < v_i < 0.5 \end{split}$$

Solution found for w = [1,1,1]

Solution found for w = [10,5,1]

These results appeared this year in TACAS 2011, LNCS 6605, pp. 326–340, 2011

26