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The Model Checking Problem

?

system / model property / requirement

satisfies / possesses
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The Synthesis Problem
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Motivation for Requirements

Extraction

e System comprehension

e Specification reconstruction

— Missing / incomplete / out-of-date

C

13

C

ocumentation

mplicit requirements” (introduced by
evelopers)
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Requirements Extraction for
Automotive Software

 Joint project: UMD, Fraunhofer, Bosch
« Qutline

— Automotive software development

— Reqgts-extraction via machine learning
— Pilot study

— Conclusion
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Automotive Software

 Driver of iInnovation

90% of new feature content based on sw [GM]
50M+ lines of code [GM]

* Rising cost
20% of 2006 vehicle cost due to software [Conti]

« Warranty, liability, quality

High-profile recalls in Germany, Japan, US
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Automotive Software Development

« Ensure high quality of automotive software

— ... while preserving time to market
— ... at reasonable cost

 How?
— Model-based development (MBD)
Efficiencies in production

— Automated testing
Efficiencies in verification and validation (V&V)
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Models: Simulink®

Block-diagram

modeling language of

The MathWorks, Inc.

Hierarchical modeling

Simulation

Continuous, discrete
semantics
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Semantics

« Simulink has different “solvers” (= semantics)
— Continuous: Inputs / outputs are signals
— Discrete: inputs / outputs are data values
* Analog modeling: continuous solvers
 Digital-controller modeling: discrete solvers
— Synchronous
— Run-to-completion
— Time-driven
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Automated Testing: Reactis®
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Coverage Testing via Guided
Simulation

 Test = simulation run = sequence of I/O vectors

« Goal: maximize model coverage
e.g. branch, state, transition, MC/DC, etc.

 Method: guided simulation

— Simulate model, BUT
— Choose input data to guide simulation to uncovered parts
— Turn simulation runs into test data

* Input selection by Monte Carlo, constraint solving
* Implemented in Reactis®
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Verification
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models Design
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Final test

/

System test

/

Unit test

/

Implementation

* Models formalize specifications, design
* Models support V&YV, testing, code generation
* Models facilitate communication among teams
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Requirements Extraction

* The extraction problem
— Given: system (M)
— Produce: requirements (¢)
* Approach
— Generate test data satisfying coverage criteria
— Use machine learning to propose invariants

— Check invariants using instrumentation-based
verification
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Machine Learning

* Tools for inferring relationships among

variables based on time-series data

— Input: table
0 1 0

1 -1 -1
2 2 1

— Output: relationships (“association rules”)
eg. 0=sx<3 ->y=20
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Machine Learning and
Requirements Extraction

* General dea
— Treat tests (I/0O sequences) as experimental data
— Use machine learning to infer relationships
between inputs, outputs
* Qur insight

— Ensure test cases satisfy coverage criteria (e.g.
branch coverage) to ensure “thoroughness”

— Use IBV to double-check proposed relationships
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Pilot Study: Production Body-
Electronic Application

 Artifacts
— Simulink model (ca. 75 blocks)
— Requirements formulated as state machine
— Requirements correspond to 42 invariants
defining transition relation

 Goal: Compare our approach, random testing
[Raz]

— Completeness (% of 42 detected?)
— Accuracy (% false positives?)
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Pilot Study: Tool Chain

« Automated test-generation tool. Reactis
* Machine-learning tool: Magnum Opus

 Additional tooling

— Test-format conversions

— Automated generation of monitor models,
Instrumentation
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Experimental Design

* Repeat five times

1. Generate coverage tests (Reactis)

2. Create invariants (Magnum Opus)

3. Use IBV to double-check invariants (Reactis)
4. Combine original, IBV tests, rerun 2, 3

* Repeat five times

Generate random tests (Reactis)

Create invariants (Magnum Opus)

Use IBV to double-check invariants (Reactis)

Create second set of random tests, combine with first
Repeat 3

abkowbdpE
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Experimental Results

« Hypothesis: coverage-testing yields better invariants than
random testing

« Coverage results:

95% of inferred invariants true
97% of requirements inferred
Two missing requirements detected

« Random results:

55% of inferred invariants true
40% of requirements inferred

* Hypothesis confirmed
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Conclusions

« Coverage-testing yields better requirements

* |IBV double-checks generated invariants
effectively

 Future directions

— Extraction of temporally complex
requirements

— Visualization of generated requirements
— Analysis of “near-invariants”
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Related Work

Specification mining [Larus et al. / Biermann
etal./Suetal./Neculaetal./...]

* DAIKON [Ernst et al.]
* |ODINE [Hangal et al.]
 Invariants + BMC [Cheng et al.]

©2010 Fraunhofer USA Inc. 23



s UNIVERSITY OF Center for Fraunhofer
& MARYLAND

Experimental Software Engineering USA

CMACS Collaboration:
Computational Genomics

Single-nucleotide polymorphisms (SNPs)
— Locations in genetic code whose variations induce genetic traits

Goal: develop model for predicting which SNPs cause which traits
— Models are linear
— Model development means discovering linear coefficients

Problem: 100,000s of SNPs!

Approach:

— Use latest machine-learning techniques to speed up learning of
coefficients

— Combine with statistical tests to detect, eliminate “non-contributive”
SNPs

Collaborators: Tongtong Wu (UMD SPH), Sam Huang (UMD CS)
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CMACS Collaboration: Stochastic
Hybrid Control

« Hybrid-system modeling used in traditional control
— Deterministic plant models (continuous)
— Discrete controllers

 In real-world, plant behavior not fully predictable

« Goal: theory for modeling, analyzing stochastic hybrid
systems

— Basic modeling
— Compositionality
— Simulation

— Reachabillity

 Collaborators: Steve Marcus, Rance Cleaveland
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Thank You!

Rance Cleaveland
University of Maryland

rance@cs.umd.edu

301-405-8572

www.cs.umd.edu/~rance
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