@ UNIVERSITY OF Center for Fraunhofer
= MARYLAND Experimental Software Engineering USA

Requirements Extraction from
Models of Automotive Software

Rance Cleaveland

Department of Computer Science
University of Maryland

4 March 2010

Joint work with Sam Huang, Chris Ackermann (UMD); Armab Ray (Fraunhofer
CESE); Charles Shelton, Beth Latronico (Robert Bosch)

©2010 Fraunhofer USA Inc.

\

@ UNIVERSITY OF Center for % Fraunhofer
=) MAIWLAND Experimental Software Engineering USA

The Model Checking Problem

?

system / model property / requirement

satisfies / possesses

©2010 Fraunhofer USA Inc. 1

\

3 —
@/ K}I\IA\ﬁRS [TY OF Center for ~ Fraunhofer
) YLA.ND Experimental Software Engineering USA

The Synthesis Problem

? F o

©2010 Fraunhofer USA Inc. 2

\

UNIVERSITY OF enter for =
@ MARYLAND ExperimentaICSo;tw;re Engineering % Fraunho.f(ﬁ[
The Requirements-Extraction
Problem
M E ?

©2010 Fraunhofer USA Inc. 3

@/ UNIVERSITY OF Center for Fraunhofer
= MARYLAND Experimental Software Engineering USA

Motivation for Requirements

Extraction

e System comprehension

e Specification reconstruction

— Missing / incomplete / out-of-date

C

13

C

ocumentation

mplicit requirements” (introduced by
evelopers)

©2010 Fraunhofer USA Inc. 4

@/ UNIVERSITY OF Center for Fraunhofer
= MARYLAND Experimental Software Engineering USA

Requirements Extraction for
Automotive Software

 Joint project: UMD, Fraunhofer, Bosch
« Qutline

— Automotive software development

— Reqgts-extraction via machine learning
— Pilot study

— Conclusion

©2010 Fraunhofer USA Inc. 5

@/ UNIVERSITY OF Center for Fraunhofer
~ MARYLAND Experimental Software Engineering USA

Automotive Software

 Driver of iInnovation

90% of new feature content based on sw [GM]
50M+ lines of code [GM]

* Rising cost
20% of 2006 vehicle cost due to software [Conti]

« Warranty, liability, quality

High-profile recalls in Germany, Japan, US

©2010 Fraunhofer USA Inc. 6

\

@/ UNIVERSITY OF Center for % Fraunhofer
= MAMLAND Experimental Software Engineering USA

Automotive Software Development

« Ensure high quality of automotive software

— ... while preserving time to market
— ... at reasonable cost

 How?
— Model-based development (MBD)
Efficiencies in production

— Automated testing
Efficiencies in verification and validation (V&V)

©2010 Fraunhofer USA Inc. 7

@/ UNIVERSITY OF
* MARYLAND

Experimental Software Engineering

Models: Simulink®

Block-diagram

modeling language of

The MathWorks, Inc.

Hierarchical modeling

Simulation

Continuous, discrete
semantics

Fraunhofer

Center for
USA
B cruise_validator/User-defined target: LowSpeedOn L':_ =] I&J
Eile Edit View Simulation Format Tools Help
D *EHES s 2R 4|2 » m0o [Now
ey >
onOff
AND
done
(2 r—>
speed <
'
Constant
Relstional
Operstor Logical
Operst
Ready 100% ' ' loded5
.

©2010 Fraunhofer USA Inc.

g ‘i \!
—~

UNIVERSITY OF

MARYLAND
Models: Stateflow®

Center for
Experimental Software Engineering

) Stateflow <link= (chart) cruise/CruiseMain/CruiseMDL/CruiseMDL/Mode

Fraunhofer

File Simulation Wiew Tools Help
54 2EE fna BE oy 0o EEE BRAO =
=
(H) entry - mode = 1
=
co [onOff == 0] \A j[nn@ﬁ == 1]
Dn l \
Ennatctwemnde _ 3 [activate == 1] Er?ttwe_ N (set==18& _ (it
i V- deactivate == |:|] Entw - mode = 2
[deau:tivate ==1] l
=
0% l
|
Ready (LOCKED)

©2010 Fraunhofer USA Inc.

USA

@/ UNIVERSITY OF Center for Fraunhofer
= MARYLAND Experimental Software Engineering USA

Semantics

« Simulink has different “solvers” (= semantics)
— Continuous: Inputs / outputs are signals
— Discrete: inputs / outputs are data values
* Analog modeling: continuous solvers
 Digital-controller modeling: discrete solvers
— Synchronous
— Run-to-completion
— Time-driven

©2010 Fraunhofer USA Inc.

@/ UNIVERSITY OF Center for Fraunhofer
~ MARYLAND Experimental Software Engineering USA

Automated Testing: Reactis®

° Au to m ati C te St S u iteS Reactis Test-Suite Browser: cruise.rst i o =

Ele ‘iew Help

from SimU||nk / 2| & ol sl w] coleslan]] [Testz 5 steps) -

Port | stepi| stepz2| step3| stepal| steps]
Stateflow irpus p p p p p
. . s onoff
— Maximize coverage 2 s 6o 10 1w 1o
— Capture outputs Corae % 1o oo 1o oo
? ?waaiﬁveﬂﬁrotﬂeDelta é? gg é? —g? ég
® U SeS &: drag -0,0093.,, -0.0089. -0,0094,., -00083. -0.0089..
— Compare models, ki
systems 2 Frotsedet 51 oo o1 oo oo
I 0.0 1.0 2.0 3.0 4,0
- MOdeI Va||dat|0n Vla Caonfiguration Variable Walue
I nStru mentatlon' Based InitalSpead 15,7917983588%7
Verification | y

©2010 Fraunhofer USA Inc. 11

s UNIVERSITY OF Center for Fraunhofer
& MARYLAND

Experimental Software Engineering USA

Coverage Testing via Guided
Simulation

 Test = simulation run = sequence of I/O vectors

« Goal: maximize model coverage
e.g. branch, state, transition, MC/DC, etc.

 Method: guided simulation

— Simulate model, BUT
— Choose input data to guide simulation to uncovered parts
— Turn simulation runs into test data

* Input selection by Monte Carlo, constraint solving
* Implemented in Reactis®

©2010 Fraunhofer USA Inc. 12

s UNIVERSITY OF Center for Fraunhofer
& MAR

YLAND Experimental Software Engineering USA
Instrumentation-Based
Verification
° Formul ate requn‘ements [=] cruise_validator/Assertion: LowSpeedlnactive * E|@|E|

aS monltor mOdeIS File Edit WYiew Simulation Format Tools Help
. . O = S P+ | 3 2 W Maon
— Inputs: signals in model
) OUtIE:Ja;[;: tz? Oelearl:) ﬂ('?logllzit'on —»
. = true: violati -
* Flag = false: violation :-t
R;Is_tj;:tr'srl AND | HOT @
* Instrument main model , SChON
with monitors = g
 Test instrumented model il
to search for violations T —

“If speed is < 30, cruise
control must remain inactive”

©2010 Fraunhofer USA Inc. 13

@/UNIVERS[TY OF
" MARYLAND

Requirements

\

models | Specifications

AN

Center for

Experimental Software Engineering

(Model-Based) Development

models Design

N\

AN

\

~ Fraunhofer

Final test

/

System test

/

Unit test

/

Implementation

* Models formalize specifications, design
* Models support V&YV, testing, code generation
* Models facilitate communication among teams

©2010 Fraunhofer USA Inc.

USA

@ UNIVERSITY OF Center for Fraunhofer
~ MARYLAND Experimental Software Engineering USA

Requirements Extraction

* The extraction problem
— Given: system (M)
— Produce: requirements (¢)
* Approach
— Generate test data satisfying coverage criteria
— Use machine learning to propose invariants

— Check invariants using instrumentation-based
verification

©2010 Fraunhofer USA Inc. 15

®

\

UNIVERSITY OF ~— F hof
Center for Z rraunnorter
MAR

YLA.ND Experimental Software Engineering USA

Machine Learning

* Tools for inferring relationships among

variables based on time-series data

— Input: table
0 1 0

1 -1 -1
2 2 1

— Output: relationships (“association rules”)
eg. 0=sx<3 ->y=20

©2010 Fraunhofer USA Inc. 16

@ UNIVERSITY OF Center for Fraunhofer
~ MARYLAND Experimental Software Engineering USA

Machine Learning and
Requirements Extraction

* General dea
— Treat tests (I/0O sequences) as experimental data
— Use machine learning to infer relationships
between inputs, outputs
* Qur insight

— Ensure test cases satisfy coverage criteria (e.g.
branch coverage) to ensure “thoroughness”

— Use IBV to double-check proposed relationships

©2010 Fraunhofer USA Inc. 17

@/ UNIVERSITY OF Center for Fraunhofer
~ MARYLAND Experimental Software Engineering USA

Pilot Study: Production Body-
Electronic Application

 Artifacts
— Simulink model (ca. 75 blocks)
— Requirements formulated as state machine
— Requirements correspond to 42 invariants
defining transition relation

 Goal: Compare our approach, random testing
[Raz]

— Completeness (% of 42 detected?)
— Accuracy (% false positives?)

©2010 Fraunhofer USA Inc. 18

- -/
@/ UNIVERSITY OF Center for % Fraunhofer
= MAMLAND Experimental Software Engineering USA

Pilot Study: Tool Chain

« Automated test-generation tool. Reactis
* Machine-learning tool: Magnum Opus

 Additional tooling

— Test-format conversions

— Automated generation of monitor models,
Instrumentation

©2010 Fraunhofer USA Inc. 19

@ UNIVERSITY OF Center for Fraunhofer
~ MARYLAND Experimental Software Engineering USA

Experimental Design

* Repeat five times

1. Generate coverage tests (Reactis)

2. Create invariants (Magnum Opus)

3. Use IBV to double-check invariants (Reactis)
4. Combine original, IBV tests, rerun 2, 3

* Repeat five times

Generate random tests (Reactis)

Create invariants (Magnum Opus)

Use IBV to double-check invariants (Reactis)

Create second set of random tests, combine with first
Repeat 3

abkowbdpE

©2010 Fraunhofer USA Inc. 20

- -/
@/ UNIVERSITY OF Center for % Fraunhofer
= MAMLAND Experimental Software Engineering USA

Experimental Results

« Hypothesis: coverage-testing yields better invariants than
random testing

« Coverage results:

95% of inferred invariants true
97% of requirements inferred
Two missing requirements detected

« Random results:

55% of inferred invariants true
40% of requirements inferred

* Hypothesis confirmed

©2010 Fraunhofer USA Inc. 21

s UNIVERSITY OF Center for Fraunhofer
& MARYLAND

Experimental Software Engineering USA

Conclusions

« Coverage-testing yields better requirements

* |IBV double-checks generated invariants
effectively

 Future directions

— Extraction of temporally complex
requirements

— Visualization of generated requirements
— Analysis of “near-invariants”

©2010 Fraunhofer USA Inc. 22

S UNIVERSITY OF
~ Center for Fraun hOfer
@ MAMAND Experimental Software Engineering USA

Related Work

Specification mining [Larus et al. / Biermann
etal./Suetal./Neculaetal./...]

* DAIKON [Ernst et al.]
* |ODINE [Hangal et al.]
 Invariants + BMC [Cheng et al.]

©2010 Fraunhofer USA Inc. 23

s UNIVERSITY OF Center for Fraunhofer
& MARYLAND

Experimental Software Engineering USA

CMACS Collaboration:
Computational Genomics

Single-nucleotide polymorphisms (SNPs)
— Locations in genetic code whose variations induce genetic traits

Goal: develop model for predicting which SNPs cause which traits
— Models are linear
— Model development means discovering linear coefficients

Problem: 100,000s of SNPs!

Approach:

— Use latest machine-learning techniques to speed up learning of
coefficients

— Combine with statistical tests to detect, eliminate “non-contributive”
SNPs

Collaborators: Tongtong Wu (UMD SPH), Sam Huang (UMD CS)

©2010 Fraunhofer USA Inc. 24

@ UNIVERSITY OF Center for Fraunhofer
~ MARYLAND Experimental Software Engineering USA

CMACS Collaboration: Stochastic
Hybrid Control

« Hybrid-system modeling used in traditional control
— Deterministic plant models (continuous)
— Discrete controllers

 In real-world, plant behavior not fully predictable

« Goal: theory for modeling, analyzing stochastic hybrid
systems

— Basic modeling
— Compositionality
— Simulation

— Reachabillity

 Collaborators: Steve Marcus, Rance Cleaveland

©2010 Fraunhofer USA Inc. 25

@ UNIVERSITY OF Center for
~ MARYLAND Experimental Software Engineering

Thank You!

Rance Cleaveland
University of Maryland

rance@cs.umd.edu

301-405-8572

www.cs.umd.edu/~rance

©2010 Fraunhofer USA Inc.

Fraunhofer

26

USA

mailto:rance@cs.umd.edu

