

Requirements Extraction from Models of Automotive Software

Rance Cleaveland

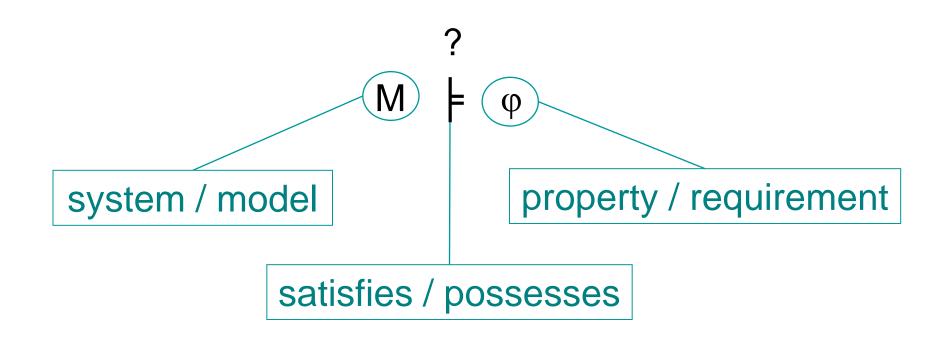
Department of Computer Science University of Maryland

4 March 2010

Joint work with Sam Huang, Chris Ackermann (UMD); Arnab Ray (Fraunhofer CESE); Charles Shelton, Beth Latronico (Robert Bosch)

©2010 Fraunhofer USA Inc.

The Model Checking Problem



The Synthesis Problem

The Requirements-Extraction Problem

Motivation for Requirements Extraction

- System comprehension
- Specification reconstruction
 - Missing / incomplete / out-of-date documentation
 - "Implicit requirements" (introduced by developers)

Requirements Extraction for Automotive Software

- Joint project: UMD, Fraunhofer, Bosch
- Outline
 - Automotive software development
 - Reqts-extraction via machine learning
 - Pilot study
 - Conclusion

Automotive Software

Driver of innovation

90% of new feature content based on sw [GM] 50M+ lines of code [GM]

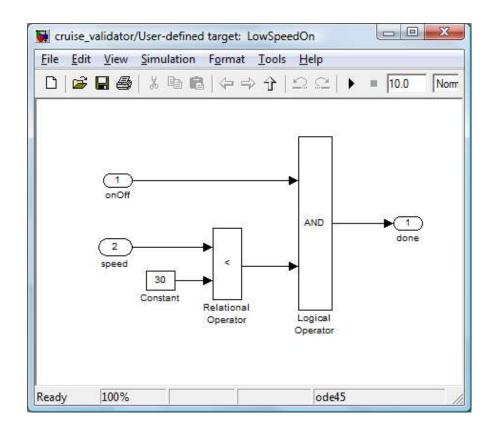
- Rising cost
 - 20% of 2006 vehicle cost due to software [Conti]
- Warranty, liability, quality
 - High-profile recalls in Germany, Japan, US

Automotive Software Development

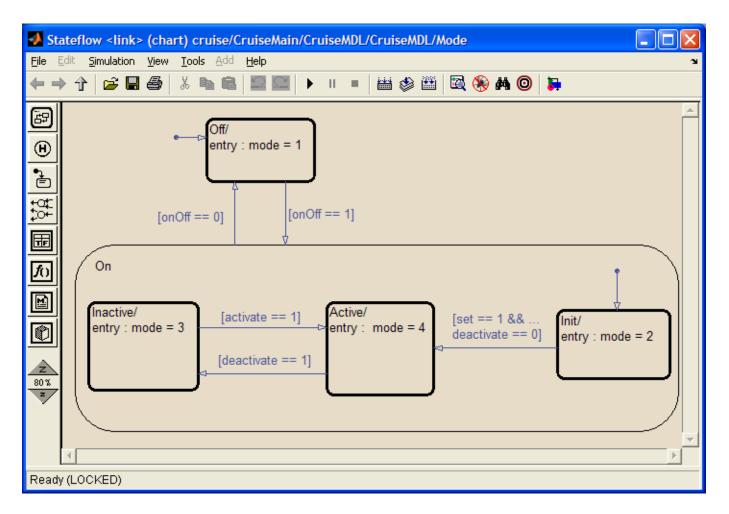
- Ensure high quality of automotive software
 - ... while preserving time to market
 - ... at reasonable cost
- How?
 - Model-based development (MBD)
 Efficiencies in production
 - Automated testing
 Efficiencies in verification and validation (V&V)

Models: Simulink®

- Block-diagram modeling language of The MathWorks, Inc.
- Hierarchical modeling
- Simulation
- Continuous, discrete semantics



Models: Stateflow®



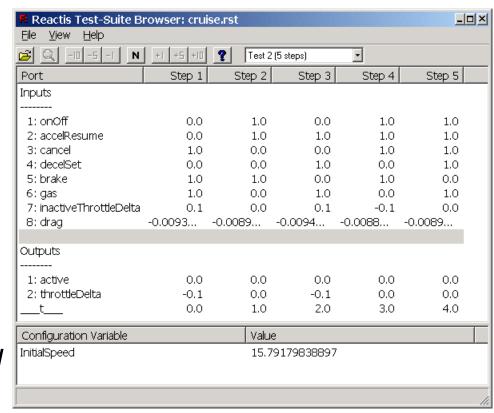
©2010 Fraunhofer USA Inc.

Semantics

- Simulink has different "solvers" (= semantics)
 - Continuous: inputs / outputs are signals
 - Discrete: inputs / outputs are data values
- Analog modeling: continuous solvers
- Digital-controller modeling: discrete solvers
 - Synchronous
 - Run-to-completion
 - Time-driven

Automated Testing: Reactis®

- Automatic test suites from Simulink / Stateflow
 - Maximize coverage
 - Capture outputs
- Uses
 - Compare models, systems
 - Model validation via Instrumentation-Based Verification

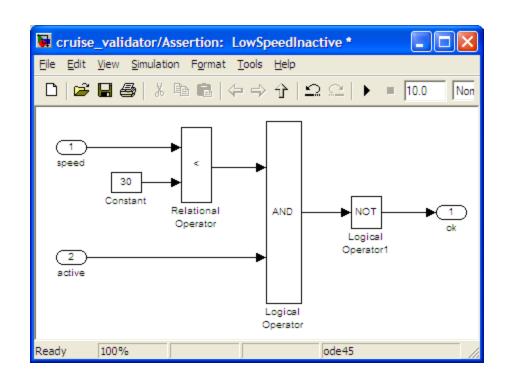


Coverage Testing via Guided Simulation

- Test = simulation run = sequence of I/O vectors
- Goal: maximize model coverage
 e.g. branch, state, transition, MC/DC, etc.
- Method: guided simulation
 - Simulate model, BUT
 - Choose input data to guide simulation to uncovered parts
 - Turn simulation runs into test data
- Input selection by Monte Carlo, constraint solving
- Implemented in Reactis®

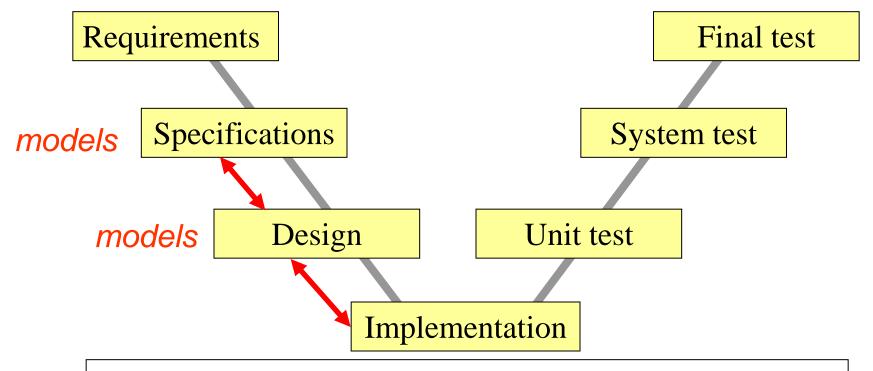
Instrumentation-Based Verification

- Formulate requirements as monitor models
 - Inputs: signals in model
 - Outputs: boolean flags
 - Flag = true: no violation
 - Flag = false: violation
- Instrument main model with monitors
- Test instrumented model to search for violations



"If speed is < 30, cruise control must remain inactive"

(Model-Based) Development



- Models formalize specifications, design
- Models support V&V, testing, code generation
- Models facilitate communication among teams

©2010 Fraunhofer USA Inc.

Requirements Extraction

- The extraction problem
 - Given: system (M)
 - Produce: requirements (φ)
- Approach
 - Generate test data satisfying coverage criteria
 - Use machine learning to propose invariants
 - Check invariants using instrumentation-based verification

Machine Learning

- Tools for inferring relationships among variables based on time-series data
 - Input: table

Time	X	У
0	1	0
1	-1	-1
2	2	1

Output: relationships ("association rules")

e.g.
$$0 \le x \le 3 -> y \ge 0$$

Machine Learning and Requirements Extraction

General dea

- Treat tests (I/O sequences) as experimental data
- Use machine learning to infer relationships between inputs, outputs

Our insight

- Ensure test cases satisfy coverage criteria (e.g. branch coverage) to ensure "thoroughness"
- Use IBV to double-check proposed relationships

Pilot Study: Production Body-Electronic Application

- Artifacts
 - Simulink model (ca. 75 blocks)
 - Requirements formulated as state machine
 - Requirements correspond to 42 invariants defining transition relation
- Goal: Compare our approach, random testing [Raz]
 - Completeness (% of 42 detected?)
 - Accuracy (% false positives?)

Pilot Study: Tool Chain

- Automated test-generation tool: Reactis
- Machine-learning tool: Magnum Opus
- Additional tooling
 - Test-format conversions
 - Automated generation of monitor models, instrumentation

Experimental Design

Repeat five times

- 1. Generate coverage tests (Reactis)
- 2. Create invariants (Magnum Opus)
- 3. Use IBV to double-check invariants (Reactis)
- 4. Combine original, IBV tests, rerun 2, 3

Repeat five times

- Generate random tests (Reactis)
- 2. Create invariants (Magnum Opus)
- 3. Use IBV to double-check invariants (Reactis)
- 4. Create second set of random tests, combine with first
- 5. Repeat 3

Experimental Results

- Hypothesis: coverage-testing yields better invariants than random testing
- Coverage results:

95% of inferred invariants true 97% of requirements inferred Two missing requirements detected

Random results:

55% of inferred invariants true 40% of requirements inferred

Hypothesis confirmed

Conclusions

- Coverage-testing yields better requirements
- IBV double-checks generated invariants effectively
- Future directions
 - Extraction of temporally complex requirements
 - Visualization of generated requirements
 - Analysis of "near-invariants"

Related Work

- Specification mining [Larus et al. / Biermann et al. / Su et al. / Necula et al. / ...]
- DAIKON [Ernst et al.]
- IODINE [Hangal et al.]
- Invariants + BMC [Cheng et al.]

CMACS Collaboration: Computational Genomics

- Single-nucleotide polymorphisms (SNPs)
 - Locations in genetic code whose variations induce genetic traits
- Goal: develop model for predicting which SNPs cause which traits
 - Models are linear
 - Model development means discovering linear coefficients
- Problem: 100,000s of SNPs!
- Approach:
 - Use latest machine-learning techniques to speed up learning of coefficients
 - Combine with statistical tests to detect, eliminate "non-contributive" SNPs
- Collaborators: Tongtong Wu (UMD SPH), Sam Huang (UMD CS)

CMACS Collaboration: Stochastic Hybrid Control

- Hybrid-system modeling used in traditional control
 - Deterministic plant models (continuous)
 - Discrete controllers
- In real-world, plant behavior not fully predictable
- Goal: theory for modeling, analyzing stochastic hybrid systems
 - Basic modeling
 - Compositionality
 - Simulation
 - Reachability
- Collaborators: Steve Marcus, Rance Cleaveland

Thank You!

Rance Cleaveland
University of Maryland

rance@cs.umd.edu

301-405-8572

www.cs.umd.edu/~rance