
- 1 -

Verification of linear hybrid systems:
Symbolic representations using

simple interpolants

Christoph Scholl
Albert-Ludwigs-University Freiburg

Thanks to Florian Pigorsch, Stefan Disch, Ernst Althaus,
Werner Damm, Uwe Waldmann, …

- 2 -

Background: LinAIG Based Model Checking

 Given:
 Hybrid system with dynamics restricted to differential inclusions
 Intended application domain: Hybrid systems with a large number of

discrete states
 Safety specification
 Initial states

- 3 -

initial
states

Background: LinAIG Based Model Checking

 Approach:
 Backward model checking from unsafe states
 Symbolic representation of sets of states by LinAIGs

(= AND-Inverter-Graphs with linear constraints)
 Preimage computation until initial states or fixed point reached

unsafe
states

- 4 -

Background: LinAIGs

 Sets of states are represented by
 Arbitrary Boolean combinations of Boolean variables d1,…, dn and linear

constraints over real-valued variables x1,…, xm

 Example: (d1 Æ d2) Æ (x1 + x2 ≥ 0) Ç (- x1 + x2 ≥ 0)

Æ

d1 d2 x1 + x2 ≥ 0 -x1 + x2 ≥ 0

Æ

ÆA
IG

Li
nA

IG

LinAIG: Represented region for d1 = d2 = 0:

 Representations may be optimized by several techniques including
„Redundancy Removal“, „Constraint Minimization“

- 5 -

Parameterized Example: Dam
PHAVer

- 6 -

FOMC with redudancy removal only

- 7 -

FOMC with constraint minimization

- 8 -

Motivation (1)

 Our current state set compaction techniques
 Do not change the computed sets of unsafe states
⇒ exact model checking

 Make use only of already existing linear constraints for state set
representation

 Problem: Sometimes the boundary of the represented region is
really complicated

© http://spaceex.imag.fr

- 9 -

Motivation (2)

 Goal:
 Replace complicated state sets by „smoother“ representations
 Introduce (restricted) over-approximations

 It is important to have the complete picture (i.e. the complete state
set) to be able to judge which over-approximation makes sense.

 As usual:
 If safety can be proved using over-approximations, everything is fine.
 Otherwise: Counterexample-guided abstraction refinement

- 10 -

Method

 Allow the state set to expand into an ²-environment of the current
state set

- 11 -

Craig Interpolation

 A Craig Interpolant for two formulas A and B with A Æ B = 0 is a
formula I with
 A ⇒ I
 I Æ B = 0
 The uninterpreted symbols in I occur both in A and B as well as the free

variables in I occur freely both in A and B

- 12 -

Method

 Allow the state set to expand into an ²-environment of the current
state set

 ⇒ Craig Interpolation with
 Current state set as A
 Negation of (current state set + ²-environment + other „don‘t cares“) as

B
 A Æ B = 0

⇒ Craig interpolant I with A ⇒ I, I Æ B = 0
 Thus we need simple interpolants!

- 13 -

Interpolation example computed by MathSAT

A

B

- 14 -

Interpolation example computed by MathSAT

- 15 -

Another possible solution …

- 16 -

Closer look at interpolation procedure:
Running example

l1 = (−x2 ≤ 0),
l2 = (x1 ≤ 1),
l3 = (−x2 ≤ −5),
l4 = (x1 ≤ 6),
l5 = (−2x1 + x2 ≤ −6),
l6 = (−x1 + 2x2 ≤ 0)

A = (l1 ∧ l2) ∨ (l3 ∧ l4)
= (l1 ∨ l3) ∧ (l1 ∨ l4)

∧(l2 ∨ l3) ∧ (l2 ∨ l4)
B = (l5 ∧ l6)

- 17 -

Proof of unsatisfiability

Theory lemmata

How to construct an
interpolant?
(see McMillan 2005)
 Leaves:

 Remove all atoms
not occuring in B
from A-clauses

 Replace B-
clauses by 1

 Replace theory
lemmata by single
linear constraint,
the „theory
interpolant“

 Internal nodes:
 Replace by OR, if

pivot is not in B
 Replace by AND,

if pivot is in B

- 18 -

Interpolant

How to construct an
interpolant?
(see McMillan 2005)
 Leaves:

 Remove all atoms
not occuring in B
from A-clauses

 Replace B-
clauses by 1

 Replace theory
lemmata by single
linear constraint,
the „theory
interpolant“

 Internal nodes:
 Replace by OR, if

pivot is not in B
 Replace by AND,

if pivot is in B

- 19 -

Interpolant

How to construct an
interpolant?
(see McMillan 2005)
 Leaves:

 Remove all atoms
not occuring in B
from A-clauses

 Replace B-
clauses by 1

 Replace theory
lemmata by single
linear constraint,
the „theory
interpolant“

 Internal nodes:
 Replace by OR, if

pivot is not in B
 Replace by AND,

if pivot is in B

- 20 -

Interpolant

- 21 -

How to compute Theory Interpolants?

 Theory interpolants are computed for each theory lemma, e.g.

 The theory lemma says that is inconsistent.
 A theory interpolant is itself an interpolant of the „A-part“

and the „B-part“ .
 Proof of unsatisfiability for „A-part“ Æ „B-part“:

 Non-negative linear combination leading to contradiction (e.g. 0 ≤ -4)

(¬l1 ∨ ¬l2 ∨ ¬l5)
(l1 ∧ l2 ∧ l5)

(l1 ∧ l2)
l5

−x2 ≤ 0 | · 1
x1 ≤ 1 | · 2

−2x1 + x2 ≤−6 | · 1
0x1 + 0x2 ≤−4

- 22 -

How to compute Theory Interpolants?

 Theory interpolants are computed for each theory lemma, e.g.

 The theory lemma says that is inconsistent.
 A theory interpolant is itself an interpolant of the „A-part“

and the „B-part“ .
 Interpolant It for „A-part“ Æ „B-part“:

 First part of the proof belonging to the „A-part“

(¬l1 ∨ ¬l2 ∨ ¬l5)
(l1 ∧ l2 ∧ l5)

(l1 ∧ l2)
l5

−x2 ≤ 0 | · 1
x1 ≤ 1 | · 2

−2x1 + x2 ≤−6 | · 1
0x1 + 0x2 ≤−4

−x2 ≤ 0 | · 1
x1 ≤ 1 | · 2
2x1 − x2 ≤ 2

2x1 − x2 ≤ 2 | · 1
−2x1 + x2 ≤−6 | · 1
0x1 + 0x2 ≤−4

Theory Interpolant It
Proof that It Æ „B-part“ = 0

- 23 -

Computing Theory Interpolants

 Theory interpolants can be computed by linear programming
(Rybalchenko, Sofronie-Stokkermans 2007):

 Suitable values for may be found by
linear programming.

 The computed interpolant is a linear
constraint with

−x2 ≤ 0 | · λ1
x1 ≤ 1 | · λ2

−2x1 + x2 ≤−6 | · μ1
0x1 + 0x2 ≤−1

λ1,λ2,μ1 ≥ 0

λ2 − 2μ1 = 0
−λ1 + μ1 = 0

λ2 − 6μ1 ≤−1

λ2 = i1
−λ1 = i2

λ2 = δ

i1x1 + i2x2 ≤ δ

- 24 -

Running example

 This method results in exactly the following interpolant with one linear
constraint for each theory lemma:

- 25 -

Running example

 However, there is an interpolant with a single linear constraint:

- 26 -

Shared Interpolants for Several Theory Lemmata

 Just an extension to the RS-2007-method:
−x2 ≤ 0 | · λ1,1

x1 ≤ 1 | · λ1,2
−2x1 + x2 ≤−6 | · μ1,1
0x1 + 0x2 ≤−1

λ1,1,λ1,2,μ1,1 ≥ 0

λ1,2 − 2μ1,1 = 0
−λ1,1 + μ1,1 = 0

λ1,2 − 6μ1,1 ≤−1

λ1,2 = i1
−λ1,1 = i2

λ1,2 = δ

 Shared theory interpolant for two theory lemmata?i1x1 + i2x2 ≤ δ

−x2 ≤−5 | · λ2,1
x1 ≤ 6 | · λ2,2

−x1 + 2x2 ≤ 0 | · μ2,1
0x1 + 0x2 ≤−1

λ2,1,λ2,2,μ2,1 ≥ 0

λ2,2 − μ2,1 = 0
−λ2,1 + 2μ2,1 = 0
−5λ2,1 + 6λ2,2 ≤−1

λ2,2 = i1
−λ2,1 = i2
−5λ2,1 + 6λ2,2 = δ

 … can be computed by linear programming as well.

- 27 -

Shared Interpolants for Several Theory Lemmata

 Unfortunately, first results showed that this does not work!
 The potential to find shared interpolants for several theory lemmata

is not high enough.

 More degrees of freedom are needed to enable a larger number of
shared interpolants …

 1st approach: Relaxing constraints
 Lemma: The RS-2007-method only computes theory interpolants

which touch the A-part of the theory conflict (as long as the theory
conflict is minimized, and both A- and B-part are not empty).

⇒ Relax constraints to remove this restriction

- 28 -

Relaxing constraints

- 29 -

Relaxing constraints

−x2 ≤ 0 | · λ1,1
x1 ≤ 1 | · λ1,2

−2x1 + x2 ≤−6 | · μ1,1
0x1 + 0x2 ≤−1
λ1,1,λ1,2,μ1,1 ≥ 0

λ1,2 − 2μ1,1 = 0
−λ1,1 + μ1,1 = 0

λ1,2 − 6μ1,1 ≤−1

λ1,2 = i1
−λ1,1 = i2

λ1,2 = δ

−x2 ≤−5 | · λ2,1
x1 ≤ 6 | · λ2,2

−x1 + 2x2 ≤ 0 | · μ2,1
0x1 + 0x2 ≤−1

λ2,1,λ2,2,μ2,1 ≥ 0

λ2,2 − μ2,1 = 0
−λ2,1 + 2μ2,1 = 0
−5λ2,1 + 6λ2,2 ≤−1

λ2,2 = i1
−λ2,1 = i2
−5λ2,1 + 6λ2,2 = δ

 Shared interpolant i1x1 + i2x2 ≤ δ

- 30 -

Relaxing constraints

−x2 ≤ 0 | · λ1,1
x1 ≤ 1 | · λ1,2

−2x1 + x2 ≤−6 | · μ1,1
0x1 + 0x2 ≤−1
λ1,1,λ1,2,μ1,1 ≥ 0

λ1,2 − 2μ1,1 = 0
−λ1,1 + μ1,1 = 0

λ1,2 − 6μ1,1 ≤−1

λ1,2 = i1
−λ1,1 = i2

λ1,2 ≤ δ

−x2 ≤−5 | · λ2,1
x1 ≤ 6 | · λ2,2

−x1 + 2x2 ≤ 0 | · μ2,1
0x1 + 0x2 ≤−1

λ2,1,λ2,2,μ2,1 ≥ 0

λ2,2 − μ2,1 = 0
−λ2,1 + 2μ2,1 = 0
−5λ2,1 + 6λ2,2 ≤−1

λ2,2 = i1
−λ2,1 = i2
−5λ2,1 + 6λ2,2 ≤ δ

 Shared interpolant i1x1 + i2x2 ≤ δ

- 31 -

Relaxing constraints

−x2 ≤ 0 | · λ1,1
x1 ≤ 1 | · λ1,2

−2x1 + x2 ≤−6 | · μ1,1
0x1 + 0x2 ≤−1
λ1,1,λ1,2,μ1,1 ≥ 0

λ1,2 − 2μ1,1 = 0
−λ1,1 + μ1,1 = 0

δ − 6μ1,1 ≤−1

λ1,2 = i1
−λ1,1 = i2

λ1,2 ≤ δ

−x2 ≤−5 | · λ2,1
x1 ≤ 6 | · λ2,2

−x1 + 2x2 ≤ 0 | · μ2,1
0x1 + 0x2 ≤−1

λ2,1,λ2,2,μ2,1 ≥ 0

λ2,2 − μ2,1 = 0
−λ2,1 + 2μ2,1 = 0

δ ≤−1

λ2,2 = i1
−λ2,1 = i2
−5λ2,1 + 6λ2,2 ≤ δ

 Shared interpolant i1x1 + i2x2 ≤ δ

- 32 -

Shared Interpolants for Several Theory Lemmata

 Unfortunately, this still does not work for our example:

- 33 -

Shared Interpolants for Several Theory Lemmata

 Unfortunately, this still does not work for our example: 1st theory lemma

Direction of
is fixed!

l7

- 34 -

Shared Interpolants for Several Theory Lemmata

 Unfortunately, this still does not work for our example: 2nd theory lemma

Direction of
is fixed!

l8

- 35 -

Shared Interpolants for Several Theory Lemmata

 Lemma: If a theory conflict is minimized (and neither A-part nor B-
part are empty), then the direction vector of the theory interpolant is
fixed.

 However: Modern SMT solvers minimize theory conflicts in order
to prune the search space as much as possible!

 Idea: Extend theory lemmata by additional inequations in a way that
 the SMT proof is not destroyed,
 or at least: The interpolant computed as before is still an interpolant.

 Note: Of course an inconsistent set of constraints remains
inconsistent, if extended by additional constraints.

- 36 -

Running example

 If is extended to and is
extended to , then is a shared interpolant for both
theory lemmata.

(l1 ∧ l2 ∧ l5) (l1 ∧ l2 ∧ l5 ∧ l6) (l3 ∧ l4 ∧ l6)
(l3 ∧ l4 ∧ l5 ∧ l6) l9

- 37 -

Extending Theory Lemmata, Method 1

 1st method: Push-up operation

(Pigorsch / Scholl, DATE 2013)

(¬a ∨ c) (a ∨ b)

(b ∨ c)

- 38 -

Extending Theory Lemmata, Method 1

 1st method: Push-up operation

(Pigorsch / Scholl, DATE 2013)

(a ∨ b ∨ c)

(a ∨ c) (a ∨ c ∨ e)

(¬b ∨ c) (¬b ∨ c ∨ e)(¬a ∨ c)

(b ∨ c)

 Resolution proof remains valid after push-up of a literal c into
clause n, if
 c is in the intersection of all of its children’s clauses,
 c is not n’s pivot.

 Extend theory lemmata by literals pushed into them …
 After push-up operations, the SMT proof remains valid.

- 39 -

Extending Theory Lemmata, Method 2

 2nd method: Implied literals
 A literal is

 implied for B, iff ,
 implied for A, iff and does not occur in B.A⇒ l

B⇒ l
l

l

 Running example:
 and are implied for .
 and are implied for .
 Theory lemma may be

extended to
 Theory lemma may be

extended to
 This leads to the shared theory interpolant

as depicted.

l1 l4
l5 l6

A
B

(¬l1 ∨ ¬l2 ∨ ¬l5)
(¬l1 ∨ ¬l2 ∨ ¬l4 ∨ ¬l5 ∨ ¬l6)
(¬l3 ∨ ¬l4 ∨ ¬l6)

(¬l1 ∨ ¬l3 ∨ ¬l4 ∨ ¬l5 ∨ ¬l6)

(Scholl, Pigorsch, Disch, Althaus, DATE 2014)

 Lemma: Adding the negation of implied literals to theory lemmata in
an SMT proof and using the interpolation construction according to
[McMillan 2005] leads to a valid interpolant.

- 40 -

Experiments

 > 200 intermediate state sets produced by our hybrid model checker
(representing A).

 ²-bloating of state sets represents .
 Formulas representing and contain up to 7 rational variables, up

to 1,380 inequations, up to 18,915 Boolean variables, and up to
56,721 clauses.

¬B
A B

- 41 -

First Results

This work

- 42 -

First Results

This work

- 43 -

Conclusions and Future Work

 Interpolants based on proofs of unsatisfiability may be simplified to
a great extent by shared interpolants.

 Key to successful simplification: Preprocessing proofs to increase
degrees of freedom in the selection of theory interpolants.

 Existing LP solvers / SMT solvers may be used.

 Generalization to other theories?
 To do: Full integration into model checking procedure with

abstraction refinement.

