Verification of linear hybrid systems: Symbolic representations using simple interpolants

Christoph Scholl
Albert-Ludwigs-University Freiburg

Thanks to Florian Pigorsch, Stefan Disch, Ernst Althaus, Werner Damm, Uwe Waldmann, ...

Background: LinAIG Based Model Checking

- Given:
- Hybrid system with dynamics restricted to differential inclusions
- Intended application domain: Hybrid systems with a large number of discrete states
- Safety specification
- Initial states

Background: LinAIG Based Model Checking

- Approach:
- Backward model checking from unsafe states
- Symbolic representation of sets of states by LinAIGs (= AND-Inverter-Graphs with linear constraints)
- Preimage computation until initial states or fixed point reached

Background: LinAIGs

- Sets of states are represented by
- Arbitrary Boolean combinations of Boolean variables d_{1}, \ldots, d_{n} and linear constraints over real-valued variables $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}$
- Example: $\left(d_{1} \wedge d_{2}\right) \wedge\left(x_{1}+x_{2} \geq 0\right) \vee\left(-x_{1}+x_{2} \geq 0\right)$

LinAIG:

Represented region for $d_{1}=d_{2}=0$:

- Representations may be optimized by several techniques including „Redundancy Removal", „Constraint Minimization"

Parameterized Example: Dam

FOMC with redudancy removal only

FOMC with constraint minimization

Motivation (1)

- Our current state set compaction techniques
- Do not change the computed sets of unsafe states
\Rightarrow exact model checking
- Make use only of already existing linear constraints for state set representation
- Problem: Sometimes the boundary of the represented region is really complicated

© http://spaceex.imag.fr

Motivation (2)

- Goal:
- Replace complicated state sets by „smoother" representations
- Introduce (restricted) over-approximations
- It is important to have the complete picture (i.e. the complete state set) to be able to judge which over-approximation makes sense.
- As usual:
- If safety can be proved using over-approximations, everything is fine.
- Otherwise: Counterexample-guided abstraction refinement

Method

- Allow the state set to expand into an ϵ-environment of the current state set

Craig Interpolation

- A Craig Interpolant for two formulas A and B with $A \wedge B=0$ is a formula I with
- $A \Rightarrow I$
- $I \wedge B=0$
- The uninterpreted symbols in I occur both in A and B as well as the free variables in I occur freely both in A and B

Method

- Allow the state set to expand into an ϵ-environment of the current state set

- $\quad \Rightarrow$ Craig Interpolation with
- Current state set as A
- Negation of (current state set + ϵ-environment + other „don't cares") as B
- $A \wedge B=0$
\Rightarrow Craig interpolant I with $A \Rightarrow I, I \wedge B=0$
- Thus we need simple interpolants!

Interpolation example computed by MathSAT

Interpolation example computed by MathSAT

Another possible solution ...

Closer look at interpolation procedure: Running example

$$
\begin{aligned}
l_{1} & =\left(-x_{2} \leq 0\right) \\
l_{2} & =\left(x_{1} \leq 1\right), \\
l_{3} & =\left(-x_{2} \leq-5\right), \\
l_{4} & =\left(x_{1} \leq 6\right), \\
l_{5} & =\left(-2 x_{1}+x_{2} \leq-6\right), \\
l_{6} & =\left(-x_{1}+2 x_{2} \leq 0\right) \\
\mathrm{A} & =\left(l_{1} \wedge l_{2}\right) \vee\left(l_{3} \wedge l_{4}\right) \\
= & \left(l_{1} \vee l_{3}\right) \wedge\left(l_{1} \vee l_{4}\right) \\
& \wedge\left(l_{2} \vee l_{3}\right) \wedge\left(l_{2} \vee l_{4}\right) \\
\mathrm{B} & =\left(l_{5} \wedge l_{6}\right)
\end{aligned}
$$

Proof of unsatisfiability

How to construct an interpolant?
(see McMillan 2005)

- Leaves:
- Remove all atoms not occuring in B from A-clauses
- Replace Bclauses by 1
- Replace theory lemmata by single linear constraint, the „theory interpolant"
- Internal nodes:
- Replace by OR, if pivot is not in B
- Replace by AND, if pivot is in B

Interpolant

How to construct an interpolant?
(see McMillan 2005)

- Leaves:
- Remove all atoms not occuring in B from A-clauses
- Replace Bclauses by 1
- Replace theory lemmata by single linear constraint, the „theory interpolant"
- Internal nodes:
- Replace by OR, if pivot is not in B
- Replace by AND, if pivot is in B

Interpolant

How to construct an interpolant?
(see McMillan 2005)

- Leaves:
- Remove all atoms not occuring in B from A-clauses
- Replace Bclauses by 1
- Replace theory lemmata by single linear constraint, the „theory interpolant"
- Internal nodes:
- Replace by OR, if pivot is not in B
- Replace by AND, if pivot is in B

Interpolant

How to compute Theory Interpolants?

- Theory interpolants are computed for each theory lemma, e.g. $\left(\neg l_{1} \vee \neg l_{2} \vee \neg l_{5}\right)$
- The theory lemma says that $\left(l_{1} \wedge l_{2} \wedge l_{5}\right)$ is inconsistent.
- A theory interpolant is itself an interpolant of the „A-part" $\left(l_{1} \wedge l_{2}\right)$ and the "B-part" l_{5}.
- Proof of unsatisfiability for „A-part" \wedge „B-part":
- Non-negative linear combination leading to contradiction (e.g. $0 \leq-4$)
$\left.\begin{aligned}-x_{2} & \leq 0 \mid \cdot 1 \\ & \leq 1 \mid \cdot 2 \\ x_{1} & \leq x_{1}+x_{2}\end{aligned} \leq-6 \right\rvert\, \cdot 1$

How to compute Theory Interpolants?

- Theory interpolants are computed for each theory lemma, e.g. $\left(\neg l_{1} \vee \neg l_{2} \vee \neg l_{5}\right)$
- The theory lemma says that $\left(l_{1} \wedge l_{2} \wedge l_{5}\right)$ is inconsistent.
- A theory interpolant is itself an interpolant of the „A-part" $\left(l_{1} \wedge l_{2}\right)$ and the "B-part" l_{5}.
- Interpolant I_{t} for „A-part" \wedge „B-part":
- First part of the proof belonging to the „A-part"
$\begin{array}{rlr}-x_{2} & \leq 0 \mid \cdot 1 & \\ & \leq 1 \mid \cdot 2 & -x_{2} \leq 0 \mid \cdot 1 \\ x_{1} & x_{1} & \leq 1 \mid \cdot 2 \\ -2 x_{1}+x_{2} & \leq-6 \mid \cdot 1 & 2 x_{1}-x_{2} \leq 2\end{array}$
Theory Interpolant I_{t}

Proof that $I_{t} \wedge$ „B-part" $=0$

Computing Theory Interpolants

- Theory interpolants can be computed by linear programming (Rybalchenko, Sofronie-Stokkermans 2007):

$$
\begin{aligned}
-x_{2} & \leq 0 \mid \cdot \lambda_{1} \\
& \leq 1 \mid \cdot \lambda_{2} \\
x_{1} & \leq x_{1}+x_{2} \leq-6 \mid \cdot \mu_{1} \\
\hline 0 x_{1}+0 x_{2} & \leq-1
\end{aligned}
$$

- Suitable values for may be found by linear programming.
- The computed interpolant is a linear constraint $i_{1} x_{1}+i_{2} x_{2} \leq \delta$ with

Running example

- This method results in exactly the following interpolant with one linear constraint for each theory lemma:

Running example

- However, there is an interpolant with a single linear constraint:

Shared Interpolants for Several Theory Lemmata

- Just an extension to the RS-2007-method:

$$
\begin{aligned}
& \begin{aligned}
-x_{2} & \leq 0 \mid \cdot \lambda_{1,1} \\
& \leq 1 \mid \cdot \lambda_{1,2} \\
x_{1} & -2 x_{1}+x_{2} \\
\hline 0 x_{1}+0 x_{2} & \leq-1
\end{aligned} \\
& \begin{aligned}
-x_{2} & \leq-5 \mid \cdot \lambda_{2,1} \\
& \leq 6 \mid \cdot \lambda_{2,2} \\
x_{1} & \leq 0 \mid \cdot \mu_{2,1} \\
-x_{1}+2 x_{2} & \leq-1
\end{aligned} \\
& \begin{array}{rlr}
\lambda_{1,1}, \lambda_{1,2}, \mu_{1,1} & \geq 0 \\
\lambda_{1,2}-2 \mu_{1,1} & = & 0 \\
-\lambda_{1,1}+\mu_{1,1} & = & 0 \\
\lambda_{1,2}-6 \mu_{1,1} & \leq-1 \\
\lambda_{1,2} & = & i_{1} \\
-\lambda_{1,1} & = & i_{2} \\
\lambda_{1,2} & = & \delta \\
\hline
\end{array} \\
& \begin{array}{rlr|}
\lambda_{2,1}, \lambda_{2,2}, \mu_{2,1} \geq 0 & \\
\lambda_{2,2}-\mu_{2,1} & =0 \\
+2 \mu_{2,1} & =0 \\
-\lambda_{2,1} & \leq-1 \\
-5 \lambda_{2,1}+6 \lambda_{2,2} & =i_{1} \\
\lambda_{2,2} & =i_{2} \\
-\lambda_{2,1} & = & \delta \\
-5 \lambda_{2,1}+6 \lambda_{2,2} & &
\end{array}
\end{aligned}
$$

- Shared theory interpolant $i_{1} x_{1}+i_{2} x_{2} \leq \delta$ for two theory lemmata?
- ... can be computed by linear programming as well.

Shared Interpolants for Several Theory Lemmata

- Unfortunately, first results showed that this does not work!
- The potential to find shared interpolants for several theory lemmata is not high enough.
- More degrees of freedom are needed to enable a larger number of shared interpolants ...
- 1st approach: Relaxing constraints
- Lemma: The RS-2007-method only computes theory interpolants which touch the A-part of the theory conflict (as long as the theory conflict is minimized, and both A- and B-part are not empty).
\Rightarrow Relax constraints to remove this restriction

Relaxing constraints

Relaxing constraints

$$
\begin{aligned}
& \begin{array}{rlrl}
-x_{2} & \leq 0 \mid \cdot \lambda_{1,1} & -x_{2} & \leq-5 \mid \cdot \lambda_{2,1} \\
x_{1} & \leq 1 \mid \cdot \lambda_{1,2} & x_{1} & \leq 6 \mid \cdot \lambda_{2,2} \\
-2 x_{1}+x_{2} & \leq-6 \\
\hline 0 x_{1}+0 x_{2} & \leq-1 & \cdot \mu_{1,1} & \left.\frac{-x_{1}+2 x_{2}}{} \leq 0 \right\rvert\, \cdot \mu_{2,1} \\
0 x_{1}+0 x_{2} & \leq-1
\end{array} \\
& \begin{array}{rlr}
\lambda_{1,1}, \lambda_{1,2}, \mu_{1,1} & \geq 0 \\
\lambda_{1,2}-2 \mu_{1,1} & = & 0 \\
-\lambda_{1,1}+\mu_{1,1} & = & 0 \\
\lambda_{1,2}-6 \mu_{1,1} & \leq & -1 \\
\lambda_{1,2} & =i_{1} \\
-\lambda_{1,1} & = & i_{2} \\
\lambda_{1,2} & = & \delta
\end{array}
\end{aligned}
$$

- Shared interpolant $i_{1} x_{1}+i_{2} x_{2} \leq \delta$

Relaxing constraints

$$
\begin{aligned}
& \begin{array}{rlrl}
-x_{2} & \leq 0 \mid \cdot \lambda_{1,1} & -x_{2} & \leq-5 \mid \cdot \lambda_{2,1} \\
x_{1} & \leq 1 \mid \cdot \lambda_{1,2} & x_{1} & \leq 6 \mid \cdot \lambda_{2,2} \\
-2 x_{1}+x_{2} & \leq-6 \\
\hline 0 x_{1}+0 x_{2} & \leq-1 & \cdot \mu_{1,1} & \left.\frac{-x_{1}+2 x_{2}}{} \leq 0 \right\rvert\, \cdot \mu_{2,1} \\
0 x_{1}+0 x_{2} \leq-1
\end{array} \\
& \begin{array}{rlr}
\lambda_{1,1}, \lambda_{1,2}, \mu_{1,1} & \geq 0 \\
{ }^{2} \lambda_{1,2}-2 \mu_{1,1} & = & 0 \\
-\lambda_{1,1}+\mu_{1,1} & = & 0 \\
\lambda_{1,2}-6 \mu_{1,1} & \leq & -1 \\
\lambda_{1,2} & = & i_{1} \\
-\lambda_{1,1} & & i_{2} \\
\lambda_{1,2} & \leq & \delta
\end{array}
\end{aligned}
$$

- Shared interpolant $i_{1} x_{1}+i_{2} x_{2} \leq \delta$

Relaxing constraints

$$
\begin{aligned}
& \begin{array}{rlrl}
-x_{2} & \leq 0 \mid \cdot \lambda_{1,1} & -x_{2} & \leq-5 \mid \cdot \lambda_{2,1} \\
x_{1} & \leq 1 \mid \cdot \lambda_{1,2} & x_{1} & \leq 6 \mid \cdot \lambda_{2,2} \\
-2 x_{1}+x_{2} & \leq-6 \\
\hline 0 x_{1}+0 x_{2} & \leq-1 & \cdot \mu_{1,1} & \left.\frac{-x_{1}+2 x_{2}}{} \leq 0 \right\rvert\, \cdot \mu_{2,1} \\
0 x_{1}+0 x_{2} \leq-1
\end{array} \\
& \begin{aligned}
& \lambda_{1,1}, \lambda_{1,2}, \mu_{1,1} \geq 0 \\
& \lambda_{1,2}-2 \mu_{1,1}=0 \\
&-\lambda_{1,1}+\mu_{1,1}=0 \\
& \delta-6 \mu_{1,1} \leq-1 \\
& \lambda_{1,2}=i_{1} \\
&-\lambda_{1,1}=i_{2} \\
& \lambda_{1,2} \leq \delta \\
& \hline
\end{aligned} \\
& \begin{aligned}
& \lambda_{2,1}, \lambda_{2,2}, \mu_{2,1} \geq 0 \\
& \lambda_{2,2}-\mu_{2,1}=0 \\
&-\lambda_{2,1}+2 \mu_{2,1}=0 \\
& \delta \leq-1 \\
& \lambda_{2,2}=i_{1} \\
&-\lambda_{2,1}= \\
&-5 \lambda_{2,1}+6 \lambda_{2,2} \leq \\
& \hline
\end{aligned}
\end{aligned}
$$

- Shared interpolant $i_{1} x_{1}+i_{2} x_{2} \leq \delta$

Shared Interpolants for Several Theory Lemmata

- Unfortunately, this still does not work for our example:

Shared Interpolants for Several Theory Lemmata

- Unfortunately, this still does not work for our example: 1st theory lemma

Direction of l_{7} is fixed!

Shared Interpolants for Several Theory Lemmata

- Unfortunately, this still does not work for our example: 2nd theory lemma

Direction of l_{8} is fixed!

Shared Interpolants for Several Theory Lemmata

- Lemma: If a theory conflict is minimized (and neither A-part nor Bpart are empty), then the direction vector of the theory interpolant is fixed.
- However: Modern SMT solvers minimize theory conflicts in order to prune the search space as much as possible!
- Idea: Extend theory lemmata by additional inequations in a way that
- the SMT proof is not destroyed,
- or at least: The interpolant computed as before is still an interpolant.
- Note: Of course an inconsistent set of constraints remains inconsistent, if extended by additional constraints.

Running example

- If $\left(l_{1} \wedge l_{2} \wedge l_{5}\right)$ is extended to $\left(l_{1} \wedge l_{2} \wedge l_{5} \wedge l_{6}\right)$ and $\left(l_{3} \wedge l_{4} \wedge l_{6}\right)$ is extended to $\left(l_{3} \wedge l_{4} \wedge l_{5} \wedge l_{6}\right)$, then l_{9} is a shared interpolant for both theory lemmata.

Extending Theory Lemmata, Method 1

- 1st method: Push-up operation

(Pigorsch / Scholl, DATE 2013)

Extending Theory Lemmata, Method 1

- 1st method: Push-up operation

- Resolution proof remains valid after push-up of a literal c into clause n, if
- c is in the intersection of all of its children's clauses,
- c is not n 's pivot.
- Extend theory lemmata by literals pushed into them ...
- After push-up operations, the SMT proof remains valid.
(Pigorsch / Scholl, DATE 2013)

Extending Theory Lemmata, Method 2

- 2nd method: Implied literals
- A literal l is
- implied for B , iff $\mathrm{B} \Rightarrow l$,
- implied for A , iff $\mathrm{A} \Rightarrow l$ and l does not occur in B .
- Lemma: Adding the negation of implied literals to theory lemmata in an SMT proof and using the interpolation construction according to [McMillan 2005] leads to a valid interpolant.

- Running example:
- l_{1} and l_{4} are implied for A .
- l_{5} and l_{6} are implied for B.
- Theory lemma ($\left.\neg l_{1} \vee \neg l_{2} \vee \neg l_{5}\right)$ may be extended to $\left(\neg l_{1} \vee \neg l_{2} \vee \neg l_{4} \vee \neg l_{5} \vee \neg l_{6}\right)$
- Theory lemma $\left(\neg l_{3} \vee \neg l_{4} \vee \neg l_{6}\right)$ may be extended to $\left(\neg l_{1} \vee \neg l_{3} \vee \neg l_{4} \vee \neg l_{5} \vee \neg l_{6}\right)$
- This leads to the shared theory interpolant as depicted.

Experiments

- >200 intermediate state sets produced by our hybrid model checker (representing A).
- ϵ-bloating of state sets represents $\neg \mathrm{B}$.
- Formulas representing A and B contain up to 7 rational variables, up to 1,380 inequations, up to 18,915 Boolean variables, and up to 56,721 clauses.

First Results

First Results

Conclusions and Future Work

- Interpolants based on proofs of unsatisfiability may be simplified to a great extent by shared interpolants.
- Key to successful simplification: Preprocessing proofs to increase degrees of freedom in the selection of theory interpolants.
- Existing LP solvers / SMT solvers may be used.
- Generalization to other theories?
- To do: Full integration into model checking procedure with abstraction refinement.

