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System_pc{

e language; // syntax
- specification; // theory System_servers{ --- }
or/and 802 804

- model(s) } // semantics

System_train{ --- }
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CPS : Cyber-Physical Systems

System_pc{
e language; // syntax
- specification; // theory System_servers{ - --
or/and
- model(s) } // semantics

System_train{ - - -
System_car{ --- }

YES or NO ¢




(some) Logics in Verification

non-probabilistic probabilistic

m Propositional logic

m Modal logic, CTL, LTL

m PCTL and PCTL*

. _ m Continuous stochastic logic
m First-order theories:

m Presburger arithmetic
m Pointer logic

m Separation logic
m Duration calculus .
m Metric temporal logic

m Differential dynamic logic




Exogenous Combination of Logics

Probabilization of Logics:

m (generic) SAT
m completeness

Examples:

m EPPL - Probabilistic propositional logic
m PTL - Probabilistic temporal logic
m CTPL - Temporal EPPL
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Definition (Satisfaction system)

Let £ be a set of formulas, M a class of models and IFC M x L
a satisfaction relation.
The tuple . = (£, M, IFF) is a satisfaction system.

Definition (Morphism and weak morphism)

A morphism h: .7 — .7’ is a pair (h,h), with

h:L—L and h: M —2M

morphism:  for all m € h(m’), m I o iff m’ I h(p)

weak morphism:  exists m € h(m'), m Ik ¢ iff m’ I h(p)

for all ¢ € £ and for all m’ € My, & {m! € M’ : h(m) # 0}.
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1 - Exogenous Combination of Logics

Definition ((Weak) equivalent systems)

% and ./ are (resp. weak) equivalent if there are (resp. weak)
total morphisms h : . — %" and ' : /" — % such that

0= T (h(e)) and =Rk (), forpe Ll veLl

Denoted by
m equivalent, . =g

m weak equivalent, ./ =¢ .75

Proposition ( (£, M,lF) =g (L, Ma, k) )

Proposition ( (£, My, IF) =E (L, Ma, k) )

'21 2 Iff '22 ®.
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Exogenous Combination of Logics

Let hy : ¥ — . and hy : ¥ — % be morphisms.

7
h1
L)

Idea: A ® %% = <£1 ®£2,M/,H—/>, with M’ C M1 x My

Example (Parametrization)

ZhléhQ) = <£1? M(h1=>h2)7 ”_1>?

where M(hlihg) = {m € My, : h1(m) - h2(M2)}-
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2 - Exogenous Probabilization of Logics

Definition (probabilization + globalization)

The probabilization + globalization operator transforms
(L, M,IF) into the system .#(P19) = (L(P+9) AP+ |1-(pH+9)y.

m LPH9) s (with B € L and r € Alg(R))
tu=r] [B] ¢+t)] (¢2)
=[] E<t)] (~o) [ (¢ 3T 0);

m MP+9) is the class of all m = (S, F,P,V), where (S, F,P)
is a probability space, and V' : S — M is a measurable

valuation, i.e. V71[A] def{ €S:V(s)lFp}eF;

m the satisfaction relation IF*9) is given by

n [[Bln =P(V1[B])
n m IFP+9) [g] iff V(9) IF B;

(..)
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weak morphism h, : P — Free({zs: 0 € L} U Xy UX)
m A", - probabilistic (sub)theory of . in RCF
m finite AE C Lgcr, such that AT Eree ¢ iff AL Erer ¢

Proposition (Transference of SAT)
@ has a model in MP iff  hy(p) A A% has a model in RX.

Theorem (SAT complexity lower-bound)

The SAT problem for /P is at least PSPACE and obtaining a
witness is at least EXPSPACE.

Proposition (Transference of weak completeness)

. L. d .
The axiomatization AX", ief h, Y(AXger + AL,) is a sound and
weakly complete axiomatization for /P.
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2 - Exogenous Probabilization of Logics

Let p € LP+9)

mbf(p)={B1,...,Pk} - base formulas in ¢

m ath(p) = {(NicaBi) A (Niga—Bi) + A € 2} - atomic fml. for ¢
m I, v is the set of all 5 € atb(yp) such that E9 (¢ T [-3])

m let ¢y = (Mger, x[7B]) and ¢ = (Mger, , ([B = 0))

Let 9 € L9 and ¢P € LP.

Proposition

A formula (@9 M @P) is satisfiable iff p9 and (P Mapy,) are
satisfiable.

Theorem (Transference of SAT)

If the SAT problem is solvable in ., then it is solvable in .7 ®+9).
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2 - Exogenous Probabilization of Logics

Schema axiom: IN ([8] 3 (JB8 =1))

Theorem (Transference of weak completeness)

If % has a weakly complete axiomatization AX &, then

(p+g) def
AXJT = AXE, + AXY, +IN

is a weakly complete for #P+9).

Theorem (small-model theorem)

Every ¢ satisfiable has a model (probability dist.) of 2 x size(p).

Theorem (SAT complexity lower-bound)

The SAT problem for #P19) s at least PSPACE and obtaining a
witness is at least EXPSPACE.




2 - Exogenous Probabilization of Logics

Algorithm 1: Sat(;fg)(go)

Input: formula ¢ € LP+9)
Output: m = (M, P) (m I-F?+9) ©) or f (No Model)

1 foreach ¢; = (v; 4 M s p) molecule of v do

2 foreach T C atb(p) of size < 2 x Size(p) do
3 M = 0;

4 foreach 5 €T do

5 | mpg<— Sats(B); M =M U{mg};
6 end

7 if M # 0 and M IF9 ¢, , then

8 ¢ «— hyp(pip Mip);

9 d+— PN AE(I‘);

10 n<— SatRCF(é);

1 if 1+ 0 then return m = (M,P,);
12 end

13 end

14 end

s return () (No Model);

-




EPPL - Probabilistic propositional logic

Let A be a countable set of propositional symbols.
Definition (EPPL)
LyEF'PL(IX) - <£EPPL(A>7MEPPL7 II_EF'PL>:

m set of formulas Lepp (A) is

ﬂ::: [ (=6)1 (ﬁ:ﬁ)
0 /B @+ (t2)
s0:¢=[ﬂ]ﬂ <) (~o) 1 (¢ Do)

with @ € A and r € Alg(R);

Let {X, : © — 2},eca be a stochastic process over (Q2, F, P).
| X(ﬁﬁ) =1- Xﬁ;
| X(51:>52) = mam{l — Xﬁl,Xﬁ2}.



EPPL - Semantics

Definition (EPPL (cont.))

m the class of models Mgpp, are the tuples m = (S, F, P, X)
such that X := {X,, : S — 2},ex is a stochastic process over

(S, F,P);
m the satisfaction relation I-gpp, is defined by:
m[r], =7

[/B]m = P(Xs =1)
m [t1 + to]m = [t1]m + [t2]m
[t1-to]m = [t1]m-[t2]m;

m repe [8] iff Xa(s) =1 forall s € S;

m |FeppL (tl < tg) iff [[tl]] [[tg]]m

m lFeppL (’\‘ ) iff m IyEPPL (728

m lFeppL (4101 - 4102) iff m |J’LEPPL $1 orm IFeppL Y2,

for m € Megpp. and ¢ € Lepp (A).



title

Theorem (equivalence)

yEPPL(A) =g yc(gl:i-g) (A)

Corollary (weak completeness)

The axiomatization AXE:’Z,J[Q) is weakly complete and sound for the
satisfaction system Sgpp, (A).

Theorem (SAT complexity)

The SAT problem for EPPL is PSPACE, and providing a witness (a
model) is EXPSPACE.

Theorem (model-checking complexity)

It takes O(|¢| x |S|) time to decide if an EPPL model
m = (S, P, X) satisfies .




EPPL - SAT

Algorithm 2: SAT ()

Input: formula ¢ € LPT9)(A)

Output: m = (M,P) (m |k8,’,f9) ¢) or ) (No Model)
1 foreach ¢; = (¢i 4 M ip) molecule of ¢ do

2 foreach M C 2M9) of size(M) < 2 x Size(p;) do
3 if M IF9 ¢;, then

4 ¢ — hp(gz%p M ¢i,p);

5 ¥ — ¢ NAT(M);
6
7
8
9

n «— Satrce(Y);
if 1+ 0then return m = (M,P,);

end

end
10 end
11 return () (No Model);




EPPL - Axiomatization

AXepp, is
G1 Fepp [B]  forall valid 8 € Lep(A);
G2 tepp ([B1 = B2] T ([/Bl] [Ba]));
IN l_EPPL [ f/B - 1
EqgN l_EPPL f_‘/B =1- f/B
EqP FeppL (f/B > 0) ;
EqA FeppL (f(/Bl \% /62) = fﬁl + f/82 B f(/Bl A ’82));
RCF FeppL

MP

if  hy(p) A (Areatg(p)Pr(r)) is a valid formula in the real
closed fields - RCF;

1, (1 T ¥2) FeppL 2.



EPPL - Application: Faulty Hardware
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O] &—
Qg — ay
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EPPL - Application: Faulty Hardware

] &—
9 &—

Qy

as

Figure: AND

implementation:
(flag & a1 Aag) > 0.97)N

specification:

[0

-OR-INVERTER (AOI21)

(J(as & az VvV ay) > 0.99)N[(s=as)]

(fOLG =1 —|(O(3 V (041 VAN 042)) > 0.98)



EPPL - Application: Boolean Probabilistic Programs

1) x = rand();

2) y = rand(); op = (fag1 = 0.5) N (fay: = 0.5)M
3 y=xVy;

4) if (x) { Mlaye < a1 V o] M {ags < nage]n
5) X = - X,

6) else Mlags < (a2 V ay2)]N

7 x=xVy;}
Mogs < (2?3 - agg)]

Table: Translation to EPPL formula
Gsaf = ((Joa1 < 0.5) N (foze < 0.5)M...1(fogs < 0.5))



EPPL - Application: Boolean Probabilistic Programs

1) x = rand();

2) y = rand(); op = (fag1 = 0.5) N (fay: = 0.5)M
3 y=xVy;

4) if (x) { Mlaye < a1 V o] M {ags < nage]n
5) X = - X,

6) else Mlags < (a2 V ay2)]N

7 x=xVy;}
Mogs < (2?3 - agg)]

Table: Translation to EPPL formula
Gsaf = ((Joa1 < 0.5) N (foze < 0.5)M...1(fogs < 0.5))

SAT((pp N N@saf)) =7



PTL- Probabilistic LTL

Let A be a countable set of propositional symbols.

Definition (PTL)

The probabilistic temporal logic (PTL) over A, is the system
yPTL(A) = (»CPTL(A)aMPTLy ”_PTL> where »CPTL(A) is

::=aﬂ =81 (ﬁ:ﬂ)ﬂ (XB) [ (BUB)
=r] (B[ E+t)] (t1)
=B <] (~o) ] (¢T3 e)

with @ € A, and r € alg(R);

{Xa S8 — 2}aen is extended to a stochastic process over
(S“, F,P) (sequence space of a Markov chain).

B Xxp)(m) = Xg(x)
B X(5,u8) (M) = X, () + X () (7). X3, (7). X (5,0, (7))



PTL- Semantics

Definition (PTL (cont.))

m Mpq is the class of tuples m = (S, P, u, V') where (S, P, ) is
a Markov chain and V : § — 24

m |Fpp is defined by

m[r], =7

[JB]m = P(Xp = 1);

[t1 + t2]m = [t1]m + [t2]m;
[t1-t2]m = [talm-[t2]m;

m lbpr [8] iff Koy I B

m lFpr (tl < tg) iff [[tl]] [[tg]]m;

m Fpre (~p) iff m for @;

m Fpre (01 3 w2) iff m Perl 1 or mlbpr @2,

for m € Mpr. and ¢ € Lpr (A).



PTL- SAT
Proposition (Exogenous weak equivalent)

For(A) =8 SEO(W).

Corollary (Transference of weak completeness)

The axiomatization

AXEFD L A9 L AXP, +IN

is a sound and weakly complete axiomatization for .#pr (7).

Theorem (Transference of SAT)

The SAT problem for PTL is PSPACE and obtaining a witness
(model) is EXPSPACE.




Temporal EPPL

Definition (CTPL)

Consider the system

yCTPL(A) = <£CTPL(A)7 MCTPL7 ”_CTPL>?

m Lo (A) s
mp:=8] (=p) [ (¢=¢)] (AXp) [ (Al¢Up)) ]| (AGyp)
with 8 € LeppL(A);

B Mcrp is the class of tuples m = (S, R,V : S — Mgpp),
where (S, R) is a Kripke frame;

B |Fcrp. is defined by

B m, s lkcrp B iff V() IFeppL B
m ... (asin CTL)



Temporal EPPL

Fer(N)
-
SepL (A,) T2> ZeppL (A)

Proposition (Equivalence)

y(h1:>h2) ~g yCTPL(A)-

Theorem (Transference of weak completeness)

The axiomatization AX ¢, + hi(hy 1(AXEPPL)) is weakly complete
and sound for Scrp (A).

Theorem (SAT complexity)
The satisfaction problem for CTPL is 2EXPTIME.




Future Work:

m study exogenous combination as a generic tool to
analyze heterogeneous systems (cyber-physical systems):

m automatic methods to combine systems;

m generalize Nelson-Oppen combination procedure;
m reuse of SAT and model-checking procedures (tools).

m investigate Craig's interpolation on probabilistic logics;

m developed non-Hilbert calculus for probabilistic logics
(to applied in verification by rewriting)



