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Lecture Plan 

    We’ll look at the role of proof assistants in the 
rise of type theory from the publication of 
Principia Mathematica to the present day. 

 

    My plan is to show features of the Nuprl and 
MetaPRL proof assistants and connect them to 
major ideas in a century long development of 
type theory, especially constructive type 
theory. 



The Basic Questions 

    Why is the use of interactive proof assistants 
on the rise?  Consider this lot of them: 

 

    Agda, Coq, HOL, Isabelle HOL (HOL), MetaPRL, 
Minlog, Nuprl, PVS, Twelf, and others. 

 

    Why are they all based on type theory, not set 
theory?  Why constructive?  The red ones are 
constructive  -- there is a red HOL dialect. 
(ACL2 is constructive, but not a type theory.) 



What is a Proof Assistant? 

   They are interactive software systems that 
help users create proofs in a formalized 
mathematical theory. 

 

   These formal theories arose in logic over the 
last century.  The first implementations of 
simple fragments were in the 1950s, Davis, 
Newell, Shaw, Simon, Gelernter in the US, 
Prawitz in Sweden.  



Why are there formal theories? 

    This is a fascinating question to which I’ll give a 
narrow answer tracing the “main line of logic”, a 
technical answer. 

 
    The bigger picture is about AI and the over-

arching goal of computer science to automate 
intellectual processes and build a strong 
symbiosis between people and machines. It is 
about remarkable intellectual accomplishment of 
CS. For fun, see Darwin among the Machines by 
G. Dyson 



Logical Context  

                 Consistency Questions and Logic 

                           Euclid’s 5th postulate 

 

               Computing with infinite series and 
infinitesimals reveals contradictions (19thC) 

            then infinite sets and the paradoxes 

                     cause increasing concern. 

    These days, software errors are of great concern 
as are vulnerabilities in cyber warfare. 

                      



Logical Landmark One 
 

                  Begriffsschrift  1879 

                    Gottlob Frege  

   He invents first-order logic, predicate 
calculus -- a precise language for 
concept writing (Begriffsschrift). 

                   --  A is sensible 

                  |-  A is provable 

 



Frege Advances Leibniz’s Vision 

    Another way to see this advance is that Frege 
did what Leibniz aspired to do already in the 
17th century, create a basic logic for coding all 
knowledge.  He anticipated Gödel 
numberings. 

 

    Many modern logicians are in the Leibniz 
genealogy, and we use “monads.” 



Logical Landmark Two 
The Axiomatic Approach 

    First there was the relative consistency  
approach, e.g. non-Euclidean geometries. 

 

    In 1899 Hilbert used the Axiomatic Approach 
to Geometry, remove intuition.  Peano Axioms 
in 1889,  Hilbert 1900 axioms for the Reals. 

                    1908                             1908 

               Russell Types             Zermelo Sets 



Logical Landmark Three 

    In 1910, Whitehead and Russell published 
Volume I of their three volume Principia 
Mathematica, a comprehensive logical 
foundation for mathematics.  It was not 
completely formal, but Newell, Shaw and 
Simon drew their examples from it. 

 

     The logic was Russell’s Type Theory. 



Consider the MetaPRL Proof Assistant 

    MetaPRL like Isabelle and Twelf is a Logical 
Framework designed by Jason Hickey for his 
Cornell PhD 2001 and implemented in O’Caml by 
him and extended by other students in the PRL 
group, A. Nogin, A. Kopylov, and others in Russia.  
Let’s open the prover.  What do we see? 

                                     MetaPRL 
                            -                           -                                              
                       -                                    - 
      Type Theory Axioms       CZF Set Theory Axioms 
              PRL Group                        Peter Aczel 
 



MetaPRL Offers a Choice of Theories 

    Interestingly these choices are connected due 
to a fundamental result of Peter Aczel showing 
how to embedded CZF into Type Theory. 

 

    This embedding relies on the use of recursive 
types in constructive type theory.  These types 
create great expressiveness for both Nuprl and 
Coq.  These types came from Nax Mendler’s 
1987 Cornell PhD thesis. 



Recursive Types 

    Recursive types are good data structures, e.g. 
can define lists of type A as 

                  List(A) = Unit + (A × List(A)). 

    We can define numbers as 

                  Nat = Unit + Nat  

    The general form is  

                   T = F(T)  for F:Type  Type         

    for F a monotone function on Type, e.g. 

                   X subt Y  implies F(X) subt F(Y) 



CZF Sets form a Recursive Type 

    Sets are embedded into constructive type 
theory using the recursive type 

                     Sets = B:Type × (B → Sets) 

 

    The axioms of CZF are validated using the 
axioms of type theory, and every theorem can 
be interpreted as a result in type theory.   

    We can see sets as one kind of type, a very 
rich data type or a mathematical type. 

 



Very Rich Type Theories 

    Very rich type theories are appealing because 
they facilitate the formalization of concepts. In 
this case, CZF is two axioms away from ZFC, a 
main stream foundation for mathematics. 

 

    On the other hand, a consistency guarantee is 
harder, say compared to ACL2 a modern proof 
assistant that does not use type theory but 
instead Recursive Arithmetic. 



Other Nice Embeddings                                                             

    MetaPRL can define theories like ACL2 and 
implement a famous result of Gödel that it is 
possible to translate Peano Arithmetic, PA, a 
classical first-order theory of numbers, into 
Heyting Arithmetic, HA, a constructive first-order 
theory of numbers close to ACL2. 

 

    Gödel thus showed that PA is consistent iff HA is 
consistent. This kind of result led him to think 
that Hilbert’s program was doomed. 



Other Key Types 

    The constructive type theory of Nuprl depends on 
other basic constructors such as quotient types to 
change the base equality on types, e.g. on Z  
introduce equality mod n,  Z//mod(2), define 
Bag(T) as a List(T)//permutations. 

 

    Nuprl also hides computational content using set 
types {x:A| P(x)}, access to the proof of P(x) is not 
available; it was produced then hidden. Nuprl can 
save carrying around unnecessary information. 



What else can we do with MetaPRL? 

      We can also formulate incompatible theories 
in logical frameworks.  For example, in Nuprl, 
our theory of partial recursive functions using 
bar types is incompatible with classical 
mathematics whereas most of Nuprl is 
compatible.  So MetaPRL can isolated those 
results, which are a constructive version of 
Scott’s domain theory, related to Edinburgh 
LCF.   



What else can we do with MetaPRL? 

      We can read formal mathematics and the “glossing 
of the theorems”, all the facts are there.  Some 
proofs are extraordinarily clear, like crystals. 

 

                  Let’s read one.   

 

      Also note: 

      We can automatically translate some theorems and 
proofs into natural language, a distinctly AI feature. 

 

   



Math Library 



Stamps 



Stamps 2 



Stamps 2 1 



Stamps 2 1 2 



Looking Closely at a Proof 

    Let’s look more closely at how a proof is 
represented in Nuprl and MetaPRL. We’ll take 
a simple example with interesting 
computational content. 

 

    First we look at the normal textbook style 
proof, and then at the proof tree presentation, 
also called tableau style or refinement style 
proof.  All these styles are very readable. 
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2 2

0 0 0 0

 n: . r: . Root (r,n)

by induction

     n = 0  take  r = 0, clearly Root (0,0)

    assume r: .Root (r, n-1)

  r   Root(r , n-1), i.e.  r n-1 < (r 1)

   

Theorem

Proof 

Base

Induction

       Choose where

2 2

0 0

2

0 0

2 2 2

0 0 0

2

0 0 0

    (r 1) n  v  n<(r +1)

 (r +1) n r = (r 1)

       (r 1) n < ((r +1) < (r +2) )

 n < (r +1)  r=r    since  r n-1< n.

       case then

       case  then

Qed
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Proof of Root Theorem 
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A Recursive Program for Integer Square Roots 

0

2

0 0

0

r(n):=  n= 0  0

 let r r (n-1) 

 (r 1) n  r 1

 r  

if then

          else in

          if then

                                 else fi

          fi
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Here is a very clean functional program 

This program is close to a declarative 
mathematical description of roots. 



Closer Look at a Proof 

   We see a refinement style proof here.  The 
proof starts with the goal and works 
downward to generate sub goals by selecting 
an applicable rule. 

   

    The PRL Project, started with Joseph Bates 
and me in 1979 studies refinement proofs, the 
Program/Proof Refinement Logic (PRL). 



A Picture of Proof Structure 
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A Big Bang: Creating the Formal 
Universe 

    We have just seen the epitome of a formal proof, 
and idea introduced by Hilbert progressively from 
1904, 1925, 1934, then realized by computer 
scientists. 

 
    Formal axiomatic systems were the key to 

showing the consistency of mathematics 
according to Hilbert as long as one used what he 
called finitary mathematics. To study these 
systems and show they are consistent, cannot 
prove False.  Primitive recursion is finitary, and 
PRA is a finitary logic, not very strong. 
 
 



Integer Root - Proof 



From the proof we can extract a 
program to compute the root 

    Since the proof is constructive, it defines a 
function from natural numbers N to N.  We 
can see the ML code for the function. 

 

    The constructive provers can extract 
computable functions from such proofs, Coq 
gives Haskell and ML.  Nuprl gives ML like 
programs.   



Integer Root - Program 

Algorithm with 
proof terms 

Algorithm with 
proof terms 
removed 

SML Program 



How does constructivity guarantee a 
computable function? 

   What does constructivity mean?  It might 
seem like a very long way from denying the 
law of excluded middle to extracting 
functions. 

    

    Denying the validity of P v ¬P is a 
consequence of constructive semantics, not a 
definition of intuitionism or constructivity. 



Propositional Evidence 

    Suppose that we have evidence types [A] for 
the atomic propositions A. Here is how to 
construct evidence for compound formulas in 
a model M. 

 

     [A & B]   == [A] x [B] 

     [A v B]    == [A] + [B] 

     [A => B]  == [A] → [B] 

     [false]     ==  φ   ( the empty type ) 

     [¬A]        ==  [A] → φ 



Evidence for Quantified Propositions 

   The evidence types for quantified formulas use 
the dependent types over the universe UM of 
the model M: 

 

      [All x. B(x)]     ==  x: UM  → [B(x)] 

 

      [Exists y. B(y)] ==  y: UM x [B(y)]   



L.E.J. Brouwer’s Intuitionism 

    This semantics of evidence comes from Brouwer 
in 1907.  He saw this semantics as a natural way 
to understand the meaning of all mathematical 
statements.  He believed that mathematical 
meaning for the human mind was grounded in 
computational intuition. He believed this intuition 
can not be captured in language or in logics. 

   
    As a semantic method applied in logic by Heyting 

and Kolmogorov this is called the 
Brouwer/Heyting/Kolmogorov (BHK) semantics. 



Philosophical Observations: The 
Formal Universe 

    Brouwer and Hilbert came well before Turing, and 
they could not see clearly the extent of their 
deep insights.  They fought each other bitterly 
and did not realize that the union of their insights 
had created a new digital universe.  

 
                Hilbert  -- take out all intuition, formalize 
                Brouwer – intuition is the foundation 
 
    Heyting and Kolmogorov did not realize that they 

had formulated the logical laws of this universe 
that Brouwer discovered. These laws are deep. 



From the Profound to the Practical 

• Constructive proofs give the user more bang 
for the effort, get a proof and a program 
known to be correct-by-construction.  In a 
sense the proof is a program as well. 

• Can this method generate more interesting 
programs with reasonable effort? 

• Can we get efficient programs this way? 

• Does this work for all data types,  A -> B? 



Extraction Comes from the Semantics 

   We see from the evidence semantics that the 
meaning of a true assertion provides the 
function we need.  Systems like Nuprl and 
MetaPRL rely on  a sound implementation so 
that provable statements have evidence.  This 
evidence is sometimes called a realizer, a term 
introduced by Kleene when he related 
Brouwer’s ideas to those of Church/Turing. 



A more subtle example 

   We will consider another example that makes 
a deep point discovered by Cornell PhD, 
Douglas Howe.  He showed how to draw on 
the power of the Church/Turning complete 
computation system of Nuprl.   

 

    These results make Nuprl and MetaPRL 
practical programming languages. 



A Theorem that Roots Exist  
(Can be Constructed) 

2 2

0 0 0

 n: . r: . Root (r,n)

by 

     n = 0  let  r = 0

    case  assume r: .Root (r, n/4)

     r           r n/4 < (r  + 1)

      note   

efficient induc

        

ion

   4

t

Theorem

Pf 

Base

Induction

Choose where

2 2 2

0 0 0 0

0 0

2

0

2 2

0 0 0

r  n  < 4 (r 1) 4 r 8 r 4

       thus              2 r   root (n) < 2 (r +1)

           (2 r +1)  n  r = 2×r + 1

         since    (2 r )  = 4 r 8 r 4

         r = 2×r   since

 if then

else 

  

  2 2

0 0   (2 r ) n < (2 r +1)

Qed
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Efficient Root Program 

0
2

0

0

0

root(n) :   n=0    0
  r  = root (n/4) 

(2 r +1) n
2 r +1

 2 r

                  since if  n 0, n/4 n

if then
else  let in

if 
                  then 
                  else  fi
                  fi
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The iterative code and the recursive program are 
both very inefficient.  It is easy to make them 
faster.  Note the recursive call  root(n/4). 

This is an efficient recursive function, but why is it 
correct? 



Fast Integer Root 



Fast Integer Root 



Fast Integer Root 



Fast Integer Root 



How did we manage the fast program? 

    The method was to use efficient induction. 
How do we get the efficient induction proof 
rule?  How do we know we can find the fast 
algorithms? 

 

    Essentially MetaPRL and Nuprl start with all 
possible programs, e.g. a Church/Turing 
complete language, an applied lambda 
calculus. 



Correctness of the Recursive Program 

P(0) & n: .(P(n/4) P(n))  n: .P(n)

52 

The proof uses this “efficient induction principle.”  
We can give a simple proof of the principle by 
ordinary induction. 



How do we derive efficient induction? 

   There are two ways to do this in computational 
type theory. Both rely on the key idea that we 
must prove Frege’s well formedness judgments 
rather than simply type check them.  We can use 
regular induction to prove the type of efficient 
induction. 

  

    The other way is to define efficient induction or 
any other fast algorithm using the Y combinator, 
a fixed point combinator. 



Using Y seems impossible! 

   Type systems are known to give only 
subrecursive languages, can’t get Turing 
completeness as would follow from the full 
untyped lambda calculus! 

 

    This is true about the Coq theory, CIC, and 
system, but not true about Computational 
Type Theory (CTT) and Nuprl/MetaPRL. 

    What’s up, how does that work? 



Howe’s Trick 

    The other methods uses Doug Howe’s 
discovery of the exact right computational 
equality for lazy evaluation.  We can express 
this equality in computational type theory and 
use it to prove that untyped λ-terms are 
computationally equal to typed terms. 

 

    This kind of equality is essential in Nuprl and 
Coq. 



Other Interesting Types 

    The Nuprl system has remained open, allowing 
new types and type constructors. Many of these 
have served us very well. 

 

    I will mention how we use intersection types 
since they came to us via CMU as did other 
features of Nuprl and MetaPRL as systems, e.g. 
the LF idea, defunctionalization in our evaluators, 
and domain theory (via partial types). 



Intersection and Top Types 

    We can build records using a binary intersection 
of types,  

 

   These are the elements in both types A and B with 
x=y in the intersection iff x=y in A & x=y in B. 

 

    Top is the type of all closed terms with the trivial 
equality, x=y for all x, y in Top. Note for any type 
A, we have                 and                    .     

A B

A Top AA Top



Building Records by Intersection 

    Record types can be built by intersecting 
singleton records as follows. Let  

    Id = {x,y,z,…} and Sig: Id -> Type where  

    Sig(i)= Top as the default.  Then 

                                   {x:A ; y:B}  if x≠y 

          x:A П y:B =  

                                   {x:AПB}     if x=y.  



Axiomatizing Co-Inductive Types 

    In 1988 before we added intersection types to 
CTT, we axiomatized co-inductive types and 
implemented them in Nuprl as primitive. 

 

    Now with intersection types and the Top type, 
we can define them and introduce variants. 

     

                     



Defining Co-Recursive Types in CTT 

    Let F be a function from types to types such as 
F(T) = N x T or F(T) = St -> In -> St x T. Define 
objects of the co-recursive type corec(T. F(T)) 
as the intersection of the iterates of F applied 
to Top. 

 

    To build elements, we take the fixed point of a 
function f in the following type. 

:N

( )n

n

F Top

:

( )
T Type

T F T



Elements of Co-Inductive Types 

    For example to build elements of the co-
recursive type for the function F(T) given by 

                        St -> In -> St x T 

    we use fix(λ(t.λ(s,i.<update(s,i),t>))).  

 

    It is easy to show by induction that this 
belongs to the co-recursive type.  If the 
function F is continuous, the type is a fixed 
point of F,   F(corec(T.F(T))) Ξ corec(T.F(T)). 



Fundamental Unity Emerges 

    

    Type theory plays a unifying foundational role 
in computer science comparable to the role of 
set theory in mathematics.  Just as set theory 
unified many basic concepts, type theory 
unifies other concepts in ways that set theory 
cannot because it does not integrate a rich 
computation system beyond what comes from 
intuitionistic  first-order logic. 



Summary of Main Points 

1. Expressive (rec-types, types as objects, 
quotients, squashing (hiding information), 
subtyping, intersection, Top, comp equal) 

2. Constructive semantics (props-as-types) 

3. Grounded in Church/Turing complete 
programming language 

4. Computational equality on terms is key 

5. Open-ended system including computational 
base (Church’s thesis not needed) 

6. Grounded in primitive proofs (LCF tactics) 

 



 

 

 

                            THE END 



A Motivating Observation 

65 

The demonstration that we can usefully implement pure 
and applied mathematical reasoning is one of the major 
intellectual discoveries of computer science, a 
complement to the discovery that automating mundane 
mental tasks is very difficult. 

 

Here is a short list of some of the many impressive 
examples of this very demanding work.  There are many 
other worthy examples that I won’t list in this brief 
addendum to the lecture. 



Selected Notable Examples of 
Formalized Mathematics 

• Four Color Theorem formalization – Gonthier 

• Kepler Conjecture Work – Halles and HOL 
team 

• Constructive Higman’s Lemma – Murthy 

• Prime Number Theorem – Harrison, Avigad 

• Girard’s Paradox -- Howe 

• POPLMark Challenge – Coq,Twelf,HOL 

• Paris driverless Metro line 14 – Abrial, B-tool 

• Mizar’s Journal of Formalized Mathematics 



A short story about our recent work on 
protocol synthesis 

    We have been demonstrating how to 
synthesize correct by construction distributed 
protocols. One of the properties we must 
prove first is that the protocols do not block. 
When we do this in Nuprl we show effectively 
that they are non blocking.  This led me to the 
following cute result in 2008. 



Fault-Tolerant Consensus Protocols 

    Cloud computing and distributed file systems 
used by Google, IBM, Amazon, etc. achieve 
reliability by duplication and depend on 
consensus protocols that are fault-tolerant and 
almost never fail to keep the replicas the same.  
They use Leslie Lamport’s Paxos protocol. 

 

    Computing theory says that fault tolerant 
consensus is unachievable, this is the famous FLP 
result of Fischer, Lynch, and Paterson from 1985. 



 Consensus is a Good Example 

    In modern distributed systems, e.g. the Google 
file system, clouds, etc., reliability against faults 
(crashes, attacks) is achieved by replication. 

 

                

     

    Consensus is used to coordinate write actions to 
keep the replicas identical. It is a critical protocol 
in modern systems used by IBM, Google, 
Microsoft, Amazon, EMC, etc. 



Requirements of Consensus Task 

    Use asynchronous message passing to decide 
on a value. 



Logical Properties of Consensus 

P1: If all inputs are unanimous with value v, then any   
decision must have value v. 

 
        All v:T. ( If All e:E(Input). Input(e) = v  then 
            All e:E(Decide). Decide(e) = v) 
 
    Input and Decide are event classes that effectively 

partition the events and assign values to them.  The 
events are points in abstract space/time at which 
“information flows.” More about this just below. 

   



A Fundamental Theorem of about the 
Environment 

    The Fischer/Lynch/Paterson theorem (FLP85) 
about the computing environment says: 

    it is not possible to guarantee consensus among  
n processes when one of them might fail.  

 

    We have seen the possibility of this with the 2/3 
Protocol which could waffle between choosing 0 
or 1. The environment can act as an adversary to 
consensus by managing message delivery. 



The Environment as Adversary 

    In the setting of synthesizing protocols, I have 
shown that the FLP result can be made 
constructive (CFLP). This means that there is 
an algorithm, env, which given a potential 
consensus protocol P and a proof pf that it is 
nonblocking can create message ordering and 
a computation based on it, env(P,pf), in which 
P runs forever, failing to achieve consensus. 



Perfect Attacker 

   The algorithm env(P,pf) is the perfect “denial 
of service attacker” against any consensus 
protocol P that is sensible (won’t block). 

 

    Note, 2/3 will block if it waits for n replies or if 
it refuses to change votes as rounds progress. 



 

 

                         THE END AGAIN 


