
Proof Assistants and The Rise of
Type Theory: Circa 1912 – 2012

 Robert L. Constable

Cornell University
Mach 19, 2012

Lecture at Carnegie Mellon University

Lecture Plan

 We’ll look at the role of proof assistants in the
rise of type theory from the publication of
Principia Mathematica to the present day.

 My plan is to show features of the Nuprl and
MetaPRL proof assistants and connect them to
major ideas in a century long development of
type theory, especially constructive type
theory.

The Basic Questions

 Why is the use of interactive proof assistants
on the rise? Consider this lot of them:

 Agda, Coq, HOL, Isabelle HOL (HOL), MetaPRL,
Minlog, Nuprl, PVS, Twelf, and others.

 Why are they all based on type theory, not set
theory? Why constructive? The red ones are
constructive -- there is a red HOL dialect.
(ACL2 is constructive, but not a type theory.)

What is a Proof Assistant?

 They are interactive software systems that
help users create proofs in a formalized
mathematical theory.

 These formal theories arose in logic over the
last century. The first implementations of
simple fragments were in the 1950s, Davis,
Newell, Shaw, Simon, Gelernter in the US,
Prawitz in Sweden.

Why are there formal theories?

 This is a fascinating question to which I’ll give a
narrow answer tracing the “main line of logic”, a
technical answer.

 The bigger picture is about AI and the over-

arching goal of computer science to automate
intellectual processes and build a strong
symbiosis between people and machines. It is
about remarkable intellectual accomplishment of
CS. For fun, see Darwin among the Machines by
G. Dyson

Logical Context

 Consistency Questions and Logic

 Euclid’s 5th postulate

 Computing with infinite series and
infinitesimals reveals contradictions (19thC)

 then infinite sets and the paradoxes

 cause increasing concern.

 These days, software errors are of great concern
as are vulnerabilities in cyber warfare.

Logical Landmark One

 Begriffsschrift 1879

 Gottlob Frege

 He invents first-order logic, predicate
calculus -- a precise language for
concept writing (Begriffsschrift).

 -- A is sensible

 |- A is provable

Frege Advances Leibniz’s Vision

 Another way to see this advance is that Frege
did what Leibniz aspired to do already in the
17th century, create a basic logic for coding all
knowledge. He anticipated Gödel
numberings.

 Many modern logicians are in the Leibniz
genealogy, and we use “monads.”

Logical Landmark Two
The Axiomatic Approach

 First there was the relative consistency
approach, e.g. non-Euclidean geometries.

 In 1899 Hilbert used the Axiomatic Approach
to Geometry, remove intuition. Peano Axioms
in 1889, Hilbert 1900 axioms for the Reals.

 1908 1908

 Russell Types Zermelo Sets

Logical Landmark Three

 In 1910, Whitehead and Russell published
Volume I of their three volume Principia
Mathematica, a comprehensive logical
foundation for mathematics. It was not
completely formal, but Newell, Shaw and
Simon drew their examples from it.

 The logic was Russell’s Type Theory.

Consider the MetaPRL Proof Assistant

 MetaPRL like Isabelle and Twelf is a Logical
Framework designed by Jason Hickey for his
Cornell PhD 2001 and implemented in O’Caml by
him and extended by other students in the PRL
group, A. Nogin, A. Kopylov, and others in Russia.
Let’s open the prover. What do we see?

 MetaPRL
 - -
 - -
 Type Theory Axioms CZF Set Theory Axioms
 PRL Group Peter Aczel

MetaPRL Offers a Choice of Theories

 Interestingly these choices are connected due
to a fundamental result of Peter Aczel showing
how to embedded CZF into Type Theory.

 This embedding relies on the use of recursive
types in constructive type theory. These types
create great expressiveness for both Nuprl and
Coq. These types came from Nax Mendler’s
1987 Cornell PhD thesis.

Recursive Types

 Recursive types are good data structures, e.g.
can define lists of type A as

 List(A) = Unit + (A × List(A)).

 We can define numbers as

 Nat = Unit + Nat

 The general form is

 T = F(T) for F:Type Type

 for F a monotone function on Type, e.g.

 X subt Y implies F(X) subt F(Y)

CZF Sets form a Recursive Type

 Sets are embedded into constructive type
theory using the recursive type

 Sets = B:Type × (B → Sets)

 The axioms of CZF are validated using the
axioms of type theory, and every theorem can
be interpreted as a result in type theory.

 We can see sets as one kind of type, a very
rich data type or a mathematical type.

Very Rich Type Theories

 Very rich type theories are appealing because
they facilitate the formalization of concepts. In
this case, CZF is two axioms away from ZFC, a
main stream foundation for mathematics.

 On the other hand, a consistency guarantee is
harder, say compared to ACL2 a modern proof
assistant that does not use type theory but
instead Recursive Arithmetic.

Other Nice Embeddings

 MetaPRL can define theories like ACL2 and
implement a famous result of Gödel that it is
possible to translate Peano Arithmetic, PA, a
classical first-order theory of numbers, into
Heyting Arithmetic, HA, a constructive first-order
theory of numbers close to ACL2.

 Gödel thus showed that PA is consistent iff HA is
consistent. This kind of result led him to think
that Hilbert’s program was doomed.

Other Key Types

 The constructive type theory of Nuprl depends on
other basic constructors such as quotient types to
change the base equality on types, e.g. on Z
introduce equality mod n, Z//mod(2), define
Bag(T) as a List(T)//permutations.

 Nuprl also hides computational content using set
types {x:A| P(x)}, access to the proof of P(x) is not
available; it was produced then hidden. Nuprl can
save carrying around unnecessary information.

What else can we do with MetaPRL?

 We can also formulate incompatible theories
in logical frameworks. For example, in Nuprl,
our theory of partial recursive functions using
bar types is incompatible with classical
mathematics whereas most of Nuprl is
compatible. So MetaPRL can isolated those
results, which are a constructive version of
Scott’s domain theory, related to Edinburgh
LCF.

What else can we do with MetaPRL?

 We can read formal mathematics and the “glossing
of the theorems”, all the facts are there. Some
proofs are extraordinarily clear, like crystals.

 Let’s read one.

 Also note:

 We can automatically translate some theorems and
proofs into natural language, a distinctly AI feature.

Math Library

Stamps

Stamps 2

Stamps 2 1

Stamps 2 1 2

Looking Closely at a Proof

 Let’s look more closely at how a proof is
represented in Nuprl and MetaPRL. We’ll take
a simple example with interesting
computational content.

 First we look at the normal textbook style
proof, and then at the proof tree presentation,
also called tableau style or refinement style
proof. All these styles are very readable.

26

Integer Square Root
2 21()r n r

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

6

5

4

3

2

1

2 22 8 3

2 2

0 0 0 0

 n: . r: . Root (r,n)

by induction

 n = 0 take r = 0, clearly Root (0,0)

 assume r: .Root (r, n-1)

 r Root(r , n-1), i.e. r n-1 < (r 1)

Theorem

Proof

Base

Induction

 Choose where

2 2

0 0

2

0 0

2 2 2

0 0 0

2

0 0 0

 (r 1) n v n<(r +1)

 (r +1) n r = (r 1)

 (r 1) n < ((r +1) < (r +2))

 n < (r +1) r=r since r n-1< n.

 case then

 case then

Qed

27

28

Proof of Root Theorem

22

22

2

22

22

2

2

1

1

1

0 1

1 1

1

1

0

+

NatI

base case.

BY

BY

BY TH

....

induction cas

EN

nd

e ..

BY THEN

...

n : . r : . r n r

n : r : . r n r

r :

.....

allR

existsR

Decide r

. r r

Auto

: , r : , r r

r : . r

.....

r

Auti

i i

i

o

29

2 22

22

2 22

22

1 1 1

1

1 1 1

1

1

+

+

BY THEN

BY TH

Case 1.....

Case 2.....

EN

: , r : , r r , r

r : . r r

Auto'

: , r : , r r , r

...

r :

.

exist

.

sR r

existsR r

.....

. r r

Auto

i i i

i

i i i

i

Proof of Root Theorem (continued)

A Recursive Program for Integer Square Roots

0

2

0 0

0

r(n):= n= 0 0

 let r r (n-1)

 (r 1) n r 1

 r

if then

 else in

 if then

 else fi

 fi

30

Here is a very clean functional program

This program is close to a declarative
mathematical description of roots.

Closer Look at a Proof

 We see a refinement style proof here. The
proof starts with the goal and works
downward to generate sub goals by selecting
an applicable rule.

 The PRL Project, started with Joseph Bates
and me in 1979 studies refinement proofs, the
Program/Proof Refinement Logic (PRL).

A Picture of Proof Structure

32

H2├ G2

├ G

H1├ G1

pf

A Big Bang: Creating the Formal
Universe

 We have just seen the epitome of a formal proof,
and idea introduced by Hilbert progressively from
1904, 1925, 1934, then realized by computer
scientists.

 Formal axiomatic systems were the key to

showing the consistency of mathematics
according to Hilbert as long as one used what he
called finitary mathematics. To study these
systems and show they are consistent, cannot
prove False. Primitive recursion is finitary, and
PRA is a finitary logic, not very strong.

Integer Root - Proof

From the proof we can extract a
program to compute the root

 Since the proof is constructive, it defines a
function from natural numbers N to N. We
can see the ML code for the function.

 The constructive provers can extract
computable functions from such proofs, Coq
gives Haskell and ML. Nuprl gives ML like
programs.

Integer Root - Program

Algorithm with
proof terms

Algorithm with
proof terms
removed

SML Program

How does constructivity guarantee a
computable function?

 What does constructivity mean? It might
seem like a very long way from denying the
law of excluded middle to extracting
functions.

 Denying the validity of P v ¬P is a
consequence of constructive semantics, not a
definition of intuitionism or constructivity.

Propositional Evidence

 Suppose that we have evidence types [A] for
the atomic propositions A. Here is how to
construct evidence for compound formulas in
a model M.

 [A & B] == [A] x [B]

 [A v B] == [A] + [B]

 [A => B] == [A] → [B]

 [false] == φ (the empty type)

 [¬A] == [A] → φ

Evidence for Quantified Propositions

 The evidence types for quantified formulas use
the dependent types over the universe UM of
the model M:

 [All x. B(x)] == x: UM → [B(x)]

 [Exists y. B(y)] == y: UM x [B(y)]

L.E.J. Brouwer’s Intuitionism

 This semantics of evidence comes from Brouwer
in 1907. He saw this semantics as a natural way
to understand the meaning of all mathematical
statements. He believed that mathematical
meaning for the human mind was grounded in
computational intuition. He believed this intuition
can not be captured in language or in logics.

 As a semantic method applied in logic by Heyting

and Kolmogorov this is called the
Brouwer/Heyting/Kolmogorov (BHK) semantics.

Philosophical Observations: The
Formal Universe

 Brouwer and Hilbert came well before Turing, and
they could not see clearly the extent of their
deep insights. They fought each other bitterly
and did not realize that the union of their insights
had created a new digital universe.

 Hilbert -- take out all intuition, formalize
 Brouwer – intuition is the foundation

 Heyting and Kolmogorov did not realize that they

had formulated the logical laws of this universe
that Brouwer discovered. These laws are deep.

From the Profound to the Practical

• Constructive proofs give the user more bang
for the effort, get a proof and a program
known to be correct-by-construction. In a
sense the proof is a program as well.

• Can this method generate more interesting
programs with reasonable effort?

• Can we get efficient programs this way?

• Does this work for all data types, A -> B?

Extraction Comes from the Semantics

 We see from the evidence semantics that the
meaning of a true assertion provides the
function we need. Systems like Nuprl and
MetaPRL rely on a sound implementation so
that provable statements have evidence. This
evidence is sometimes called a realizer, a term
introduced by Kleene when he related
Brouwer’s ideas to those of Church/Turing.

A more subtle example

 We will consider another example that makes
a deep point discovered by Cornell PhD,
Douglas Howe. He showed how to draw on
the power of the Church/Turning complete
computation system of Nuprl.

 These results make Nuprl and MetaPRL
practical programming languages.

A Theorem that Roots Exist
(Can be Constructed)

2 2

0 0 0

 n: . r: . Root (r,n)

by

 n = 0 let r = 0

 case assume r: .Root (r, n/4)

 r r n/4 < (r + 1)

 note

efficient induc

ion

 4

t

Theorem

Pf

Base

Induction

Choose where

2 2 2

0 0 0 0

0 0

2

0

2 2

0 0 0

r n < 4 (r 1) 4 r 8 r 4

 thus 2 r root (n) < 2 (r +1)

 (2 r +1) n r = 2×r + 1

 since (2 r) = 4 r 8 r 4

 r = 2×r since

 if then

else

 2 2

0 0 (2 r) n < (2 r +1)

Qed
45

Efficient Root Program

0
2

0

0

0

root(n) : n=0 0
 r = root (n/4)

(2 r +1) n
2 r +1

 2 r

 since if n 0, n/4 n

if then
else let in

if
 then
 else fi
 fi

46

The iterative code and the recursive program are
both very inefficient. It is easy to make them
faster. Note the recursive call root(n/4).

This is an efficient recursive function, but why is it
correct?

Fast Integer Root

Fast Integer Root

Fast Integer Root

Fast Integer Root

How did we manage the fast program?

 The method was to use efficient induction.
How do we get the efficient induction proof
rule? How do we know we can find the fast
algorithms?

 Essentially MetaPRL and Nuprl start with all
possible programs, e.g. a Church/Turing
complete language, an applied lambda
calculus.

Correctness of the Recursive Program

P(0) & n: .(P(n/4) P(n)) n: .P(n)

52

The proof uses this “efficient induction principle.”
We can give a simple proof of the principle by
ordinary induction.

How do we derive efficient induction?

 There are two ways to do this in computational
type theory. Both rely on the key idea that we
must prove Frege’s well formedness judgments
rather than simply type check them. We can use
regular induction to prove the type of efficient
induction.

 The other way is to define efficient induction or
any other fast algorithm using the Y combinator,
a fixed point combinator.

Using Y seems impossible!

 Type systems are known to give only
subrecursive languages, can’t get Turing
completeness as would follow from the full
untyped lambda calculus!

 This is true about the Coq theory, CIC, and
system, but not true about Computational
Type Theory (CTT) and Nuprl/MetaPRL.

 What’s up, how does that work?

Howe’s Trick

 The other methods uses Doug Howe’s
discovery of the exact right computational
equality for lazy evaluation. We can express
this equality in computational type theory and
use it to prove that untyped λ-terms are
computationally equal to typed terms.

 This kind of equality is essential in Nuprl and
Coq.

Other Interesting Types

 The Nuprl system has remained open, allowing
new types and type constructors. Many of these
have served us very well.

 I will mention how we use intersection types
since they came to us via CMU as did other
features of Nuprl and MetaPRL as systems, e.g.
the LF idea, defunctionalization in our evaluators,
and domain theory (via partial types).

Intersection and Top Types

 We can build records using a binary intersection
of types,

 These are the elements in both types A and B with
x=y in the intersection iff x=y in A & x=y in B.

 Top is the type of all closed terms with the trivial
equality, x=y for all x, y in Top. Note for any type
A, we have and .

A B

A Top AA Top

Building Records by Intersection

 Record types can be built by intersecting
singleton records as follows. Let

 Id = {x,y,z,…} and Sig: Id -> Type where

 Sig(i)= Top as the default. Then

 {x:A ; y:B} if x≠y

 x:A П y:B =

 {x:AПB} if x=y.

Axiomatizing Co-Inductive Types

 In 1988 before we added intersection types to
CTT, we axiomatized co-inductive types and
implemented them in Nuprl as primitive.

 Now with intersection types and the Top type,
we can define them and introduce variants.

Defining Co-Recursive Types in CTT

 Let F be a function from types to types such as
F(T) = N x T or F(T) = St -> In -> St x T. Define
objects of the co-recursive type corec(T. F(T))
as the intersection of the iterates of F applied
to Top.

 To build elements, we take the fixed point of a
function f in the following type.

:N

()n

n

F Top

:

()
T Type

T F T

Elements of Co-Inductive Types

 For example to build elements of the co-
recursive type for the function F(T) given by

 St -> In -> St x T

 we use fix(λ(t.λ(s,i.<update(s,i),t>))).

 It is easy to show by induction that this
belongs to the co-recursive type. If the
function F is continuous, the type is a fixed
point of F, F(corec(T.F(T))) Ξ corec(T.F(T)).

Fundamental Unity Emerges

 Type theory plays a unifying foundational role
in computer science comparable to the role of
set theory in mathematics. Just as set theory
unified many basic concepts, type theory
unifies other concepts in ways that set theory
cannot because it does not integrate a rich
computation system beyond what comes from
intuitionistic first-order logic.

Summary of Main Points

1. Expressive (rec-types, types as objects,
quotients, squashing (hiding information),
subtyping, intersection, Top, comp equal)

2. Constructive semantics (props-as-types)

3. Grounded in Church/Turing complete
programming language

4. Computational equality on terms is key

5. Open-ended system including computational
base (Church’s thesis not needed)

6. Grounded in primitive proofs (LCF tactics)

 THE END

A Motivating Observation

65

The demonstration that we can usefully implement pure
and applied mathematical reasoning is one of the major
intellectual discoveries of computer science, a
complement to the discovery that automating mundane
mental tasks is very difficult.

Here is a short list of some of the many impressive
examples of this very demanding work. There are many
other worthy examples that I won’t list in this brief
addendum to the lecture.

Selected Notable Examples of
Formalized Mathematics

• Four Color Theorem formalization – Gonthier

• Kepler Conjecture Work – Halles and HOL
team

• Constructive Higman’s Lemma – Murthy

• Prime Number Theorem – Harrison, Avigad

• Girard’s Paradox -- Howe

• POPLMark Challenge – Coq,Twelf,HOL

• Paris driverless Metro line 14 – Abrial, B-tool

• Mizar’s Journal of Formalized Mathematics

A short story about our recent work on
protocol synthesis

 We have been demonstrating how to
synthesize correct by construction distributed
protocols. One of the properties we must
prove first is that the protocols do not block.
When we do this in Nuprl we show effectively
that they are non blocking. This led me to the
following cute result in 2008.

Fault-Tolerant Consensus Protocols

 Cloud computing and distributed file systems
used by Google, IBM, Amazon, etc. achieve
reliability by duplication and depend on
consensus protocols that are fault-tolerant and
almost never fail to keep the replicas the same.
They use Leslie Lamport’s Paxos protocol.

 Computing theory says that fault tolerant
consensus is unachievable, this is the famous FLP
result of Fischer, Lynch, and Paterson from 1985.

 Consensus is a Good Example

 In modern distributed systems, e.g. the Google
file system, clouds, etc., reliability against faults
(crashes, attacks) is achieved by replication.

 Consensus is used to coordinate write actions to
keep the replicas identical. It is a critical protocol
in modern systems used by IBM, Google,
Microsoft, Amazon, EMC, etc.

Requirements of Consensus Task

 Use asynchronous message passing to decide
on a value.

Logical Properties of Consensus

P1: If all inputs are unanimous with value v, then any
decision must have value v.

 All v:T. (If All e:E(Input). Input(e) = v then
 All e:E(Decide). Decide(e) = v)

 Input and Decide are event classes that effectively

partition the events and assign values to them. The
events are points in abstract space/time at which
“information flows.” More about this just below.

A Fundamental Theorem of about the
Environment

 The Fischer/Lynch/Paterson theorem (FLP85)
about the computing environment says:

 it is not possible to guarantee consensus among
n processes when one of them might fail.

 We have seen the possibility of this with the 2/3
Protocol which could waffle between choosing 0
or 1. The environment can act as an adversary to
consensus by managing message delivery.

The Environment as Adversary

 In the setting of synthesizing protocols, I have
shown that the FLP result can be made
constructive (CFLP). This means that there is
an algorithm, env, which given a potential
consensus protocol P and a proof pf that it is
nonblocking can create message ordering and
a computation based on it, env(P,pf), in which
P runs forever, failing to achieve consensus.

Perfect Attacker

 The algorithm env(P,pf) is the perfect “denial
of service attacker” against any consensus
protocol P that is sensible (won’t block).

 Note, 2/3 will block if it waits for n replies or if
it refuses to change votes as rounds progress.

 THE END AGAIN

