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In this talk

Formalizing attacks on protocols

denial of service by resource exhaustion

guessing of low-entropy secrets

Modeling

in the AVANTSSAR validation platform

combining rule-based transitions and Horn clauses

Example attacks

Joint work with Bogdan Groza [ISC’09, FC’10, ASIACCS’11]



Part 1: Denial of service by resource exhaustion

Resource exhaustion:

force victim to consume excessive resources

with lower costs by attacker

Focus: computation resources

Some cryptographic operations are more expensive:
(exponentiation, public-key encryption/decryption, signatures)



Design flaws and solutions

Cost imbalance (usually affects server side)
solution: cryptographic (client) puzzles, proof-of-work protocols

Lack of authenticity: adversary can steal computational work
basic principle: include sender identity in message



Classifying DoS attacks

Excessive use

no abnormal protocol use

adversary consumes less resources than honest principals
(flooding, spam, ...)

Malicious use

adversary brings protocol to abnormal state
protocol goals not completed correctly



Modeling framework

(EU FP7 research project)

Automated Validation of Trust and Security
of Service-Oriented Architectures

AVANTSSAR Specification Language (ASLan)

three model checkers:

CL-Atse (INRIA Nancy): constraint-based

OFMC (ETHZ / IBM): on-the-fly

SATMC (U Genova): SAT-based



Sample model in ASLan

1. A→ B : A
2. B → A : NB

3. A→ B :
NA,H(kAB ,NA,NB ,A)

4. B → A : H(kAB ,NA)

(MS-CHAP)

state_A(A,ID,1,B,Kab,H,

Dummy_Na,Dummy_Nb)

.iknows(Nb)

=[exists Na]=>

state_A(A,ID,2,B,Kab,H,Na,Nb)

.iknows(pair(Na,

apply(H,pair(Kab,

pair(Na,pair(Nb,A))))))

iknows: communication mediated by intruder

exists: generates fresh values

state: contains participant knowledge



ASLan in a nutshell

state_A(A,ID,1,B,Kab,H,Dummy_Na,Dummy_Nb)

.iknows(Nb)

=[exists Na]=>

state_A(A,ID,2,B,Kab,H,Na,Nb)

.iknows(pair(Na,apply(H,pair(Kab,pair(Na,pair(Nb,A))))))

state: set of ground terms
transition:

removes terms on LHS

adds terms on RHS

intruder knowledge iknows is persistent



Augmenting models with computation cost

1. in protocol transitions [more to follow]

LHS.cost(P, C1)⇒ RHS.cost(P, C2)

2. in intruder deductions

iknows(X).iknows(Y).cost(i, C1).sum(C1, cop, C2)⇒
iknows(op(X, Y)).cost(i, C2)

for op ∈ {exp, enc, sig}

iknows(crypt(K, X)).iknows(K).cost(i, C1).sum(C1, cdec, C2)⇒
iknows(X).cost(i, C2)

(for decryption)
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Cost model [Meadows ’01]

Meadows: reference cost-based formalization of DoS attacks
manual analysis, suggests possibility of automation

Cost structure: monoid {0 , cheap,medium, expensive}
expensive: exponentiation (incl. signatures & checking)
medium: encryption, decryption
cheap: everything else

ASLan implementation: facts declared in initial state

sum(cheap, cheap, cheap).

sum(cheap, medium, medium).

...

sum(medium, expensive, expensive).

sum(expensive, expensive, expensive)



Formalizing excessive use

1. session is initiated by adversary and
2. adversary cost less than honest principal cost

attack state dos excessive(P) :=

initiate(i).cost(i, Ci).cost(P, CP).less(Ci, CP)

Track session cost only if adversary-initiated (ID):

LHS.initiate(i, ID).cost(P, C1).sum(C1, cstep, C2)

⇒ RHS.cost(P, C2)

LHS.initiate(A, ID).not(equal(i, A))⇒ RHS [unchanged ]

Can also model distributed DoS



Formalizing malicious use

In normal use protocol events match (injective agreement)
L : S → R : M

state S(S, ID, L, R, ...) ... state R(R, ID, L, S, ...) ...
send(S, R, M, L, ID) ⇐⇒ recv(S, R, M, I, ID)

Mismatch is an attack on protocol functionality (authentication)

tampered(R) :=

∃ S, M, L, ID . recv(S, R, M, L, ID).not(send(S, R, M, L, ID))

attack state dos malicious(P) :=

initiate(i).tampered(P).cost(i, Ci).cost(P, CP).less(Ci, CP)

Adversary may insert value from a previous run
⇒ must track honest agent cost only in compromised sessions



Malicious use in multiple sessions

1. track per-session cost for normal sessions

LHS.not(bad(ID)).send(S, P, M, L, ID)

.scost(P, CID, ID).sum(CID, cstep, C
′
ID).

⇒ RHS.recv(S, P, M, L, ID).scost(P, C′ID, ID)

2. switch from per-session to per-principal cost on tampering

LHS.not(bad(ID)).not(send(S, P, M, L, ID))

.cost(P, CP).scost(P, CID, ID).sum(CP, cID, C1).sum(C1, cstep, C
′
P)

⇒ RHS.recv(S, P, M, L, ID).bad(ID).cost(P, C′P)

3. track per-principal cost for tampered sessions

LHS.bad(ID).cost(P, CP).sum(CP, cstep, C
′
P)

⇒ RHS.bad(ID).cost(P, C′P)
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Undetectable resource exhaustion

Excessive/malicious executions especially dangerous if undetected
(cannot be distinguished from normal executions)

Modeled by checking that all instances of P complete successfully

dos exc nd(P) := initiate(i).active cnt(P, 0).

cost(i, Ci).cost(P, CP).less(Ci, CP)

dos mal nd(P) := tampered(P).active cnt(P, 0).

cost(i, Ci).cost(P, CP).less(Ci, CP)

Can also characterize attacks undetectable by any participant



Case studies: Station-to-station protocol

1. A→ B : αx

2. B → A : αy ,CertB ,Ek(sigB(αy , αx))
3. A→ B : CertA,Ek(sigA(αx , αy ))

Reproduced Lowe’s attack: Adv impersonates B to A:
1. A→ Adv(B) : αx

1′. Adv → B : αx

2′. B → Adv : αy ,CertB ,Ek(sigB(αy , αx))
2. Adv(B)→ A: αy ,CertB ,Ek(sigB(αy , αx))
3. A→ Adv(B): CertA,Ek(sigA(αx , αy ))

excessive use: Adv initiates attack on B
malicious use: A receives value from B ′s session with Adv



Just Fast Keying with client puzzles

[Smith et al. ’06] strengthened from [Aiello et al. ’04]

1. I → R : N ′I , g
i , ID ′R

2. R → I : N ′I ,NR , g
r , grpinfoR , IDR ,SR [g r , grpinfoR ], token, k

3. I → R : NI ,NR , g
i , g r , token,

{ID I , sa, SI [N
′
I ,NR , g

i , g r , IDR , sa]}Ke
Ka
, sol

4. R → I : {SR [N ′I ,NR , g
i , g r , ID I , sa], sa′}Ke

Ka
, sol

Analysis: malicious use exploiting the initiator

A initiates session 1 with Adv (responder)

Adv initiates session 2 with B
forwards B’s puzzle token (step 2) to A in session 1
reuses A’s solution sol (step 3) in session 2

Flaw: puzzle token is not bound to identity of requester I
(same for difficulty level k)
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Part 2: Guessing attacks

Important

weak passwords are common

vulnerable protocols still in use

Realistic, if secrets have low entropy

Few tools can detect guessing attacks:
Lowe ’02, Corin et al. ’04, Blanchet-Abadi-Fournet ’08
(only offline attacks)



How to guess ?

Two steps:

guess a value for the secret s

compute a verifier value that confirms the guess

Low entropy ⇒ can repeat over all values

Example guessing conditions [Lowe, 2002]

Adv knows v ,Es(v): guess s, and verify known value v

Adv knows Es(v .v): guess s, decrypt, verify equal parts

Adv knows Es(s): guess s, and
encrypt, verify result or
decrypt, verify result is s
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Goals for guessing theory and implementation

Detect both on-line and off-line attacks

Distinguish blockable / non-blockable on-line attacks

Deal with verifiers matching more than one secret

Allow chaining guesses of multiple secrets



From algebraic to symbolic properties

We can guess s from f (s) if f is injective.

Generalize: consider pseudo-random one-way functions

f (s, x) is distinguishing in s (probabilistically)
if polynomially many f (s, xi ) can distinguish any s ′ 6= s.

Quantify: f (s, x) is strongly distinguishing in s after q queries
if q values f (s, xi ) can on average distinguish any s ′ 6= s.

Two main guessing cases:

know image of a one-way function on the secret

know image of trap-door one-way function on the secret
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Oracles and the adversary

Oracle: abstract view of a computation (function)

off-line, constructing terms directly

on-line, employing an honest principal

An adversary:

observes the oracle for a secret s
if he knows a term that contains the secret s

ihears(Term) ∧ part(s,Term)⇒ observes(OTerm
s (·))

controls the oracle for a secret s
if he can generate terms with fresh replacements of secret s

ihears(Term(s)) ∧ iknows(s ′) ∧ iknows(Term(s ′))⇒ controls(OTerm
s (·))
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What guesses can be verified ? (1)

an already known term:

vrfy(Term) :- iknows(Term)

a signature, if the public key and the message are known:

vrfy(sign(inv(PK), Term)) :- iknows(PK) , iknows(Term)

a term under a one-way function application:

vrfy(STerm) :- iknows(h) , iknows(apply(h, Term)) ,

part(STerm, Term) , controls(STerm, Term)



What guesses can be verified ? (2)

a ciphertext, if key is known (or decryption oracle controlled)
and part of plaintext verifiable:

vrfy(scrypt(K, Term)) :- iknows(K) ,

splitknow(Term, T1, T2) , vrfy(T2)

a key, if ciphertext known and part of plaintext verifiable:

vrfy(K) :- ihears(scrypt(K, Term)) ,

splitknow(Term, T1, T2) , vrfy(T2)

where splitknow(Term, T1, T2) splits Term and asserts iknows(T1)

e.g., from m.h(m) with iknows(m) can verify h(m)



Modeling guessing rules

Protocol execution:
protocol step
intruder deductions

Intruder deductions as transitions: inefficient (state explosion)

Changing model checker built-in deductions: impractical

⇒ ASLan provides

{
transition rules
Horn clauses



Modeling with Horn clauses

are re-evaluated after each protocol step (transitive closure)

facts deduced from Horn clauses are non-persistent

hc part_left(T0, T1, T2, T3) :=

split(pair(T0,T1), T2, pair(T3,T1)) :- split(T0, T2, T3)

hc part_right(T0, T1, T2, T3) :=

split(pair(T0,T1), pair(T0,T2), T3) :- split(T1, T2, T3)

natural modeling of recursive facts (e.g., term processing)

multiple (intruder) deductions applied after each protocol step

orders of magnitude more efficient than using transitions



Resulting guessing rules

from one-way function images
(allows guessing from h(s), m.h(s.m) etc.)

guess(s) :- observes(O f
s (·)) , controls(O f

s (·))

by inverting one-way trapdoor functions
(allows guessing from {m.m}s , m.{h(m)}s etc.)

guess(s) :- observes(O
{T}K
s ) , controls(O

{T}K−1
s ) ,

splitknow(T ,T1,T2) , vrfy(T2)



Flavors of guessing

off-line: terms constructed directly by intruder
on-line: uses computations of honest protocol principals
(intruder controls computation oracles with arbitrary inputs)

undetectable

all participants terminate (no abnormal protocol activity)

modeled by checking that all instances reach final state

multiple secrets

a guessed secret becomes known to the intruder
allows chaining of guessing rules



Example 1: Norwegian ATM

Real case, described by Hole et al. (IEEE S&P 2007)

2001: money withdrawn within 1 hour of stealing card
Did the thief have to know the PIN ?

Card setup:

PIN and card-specific data DES-encrypted with unique bank key
card stores 56-bit result cut to 16 bits: bDESBK (PIN.CV )c16

Suggested attack [Hole et al., 2007]: break bank key

DES search, verifier is a legitimate card owned by adversary
But: verifier only has 16 bits ⇒ 256−16 = 240 bank keys match
Insight: each honest card reduces key search space by 16 bits

⇒ d56/16e = 4 cards suffice
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Model and new attacks

New attack, if Adv can do unlimited PIN changes on own card

PIN Change Procedure:
1.User → ATM : bDESBK (PINold)c16,PINold ,PINnew

2.ATM → User : bDESBK (PINnew )c16
simplified case: card encrypts just PIN ⇒ card-independent
⇒ observes and controls f (PIN) ⇒ can guess PIN directly

real case: card encrypts PIN and card-specific value
⇒ controls f (BK ,PIN) in argument PIN

1. use PIN-change procedure to guess BK (average 4 PINs)
2. when BK found, can trivially guess PIN



Example 2: MS-CHAP

Known insecure protocol from Microsoft, still in use

1. A→ B : A
2. B → A : NB

3. A→ B : NA,H(kab,NA,NB ,A)
4. B → A : H(kab,NA)

(a,1) → i: a
i → (b,1): a
(b,1) → i: Nb(2)
i → (a,1): Nb(2)
(a,1) → i: Na(3).h(kab.Na(3).Nb(2).a)
i → (b,1): Na(3).h(kab.Na(3).Nb(2).a)
(b,1) → i: h(kab.Na(3))
i → (a,1): h(kab.Na(3))
i → (i,1): h(kab repl.Na(3))
i → (i,1): kab.dummy

Man-in-the-middle attack: intruder observes NA and H(kAB ,NA)
⇒ can guess kAB

Similar guessing attack on NTLM protocol (v2-Session).



Example 3: Lomas et al.’89

Lowe’s replay attack: replace timestamp with constant 0

New typing attack, replacing the timestamp with a nonce

1. A→ S : {A,B,Na1,Na2,Ca, {Ta}pwdA}pks
2. S → B : A,B
3. B → S : {B,A,Nb1,Nb2,Cb, {Tb}pwdB}pks
4. S → A : {Na1, k ⊕ Na2}pwdA
5–8. [... not relevant here ...]

1′. Adv(A)→ S : {A,B,Na1′,Na2′,Ca′, {Na1, k ⊕ Na2}pwdA}pks
2′. S → B : A,B
3′. B → S : {B,A,Nb1′,Nb2′,Cb′, {Tb′}pwdB}pks
4′. S → Adv(A) : {Na1′, k ′ ⊕ Na2′}pwdA
...

From last term, knowing Na1′, pwdA can be guessed (and then k ′)



Conclusions

Automated detection for two types of attacks (guessing, DoS)
less represented in protocol verification toolsets

Implemented by augmenting protocol models
with transition costs / guessing rules (efficient as Horn clauses)

Flexibile, no changes to model checker backends

Insights for attack classification

off-line vs. on-line guessing attacks

excessive vs. malicious use in DoS attacks

attacks undetectable by protocol participants

Automated Validation of Trust and Security
of Service-Oriented Architectures, FP7-ICT-2007-1 project 216471


