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Hybrid Systems

Problem

Hybrid System

Continuous evolutions
(differential equations)

Discrete jumps
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Velocity Controller
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Velocity Controller
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v ≥ −15
x := 0
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v ≥ 15
x := 0

v ≤ 15
x := 0 v̇ = a

ṫ = 1
t ≤ τ

t ≥ τ ∧ −30 ≤ v < −15
t := 0∧a := 1.5∧x := 0

t ≥ τ ∧ −15 ≤ v ≤ 15
t := 0

x := x + τv
a := −0.001x − 0.052v

t ≥ τ ∧ 15 < v ≤ 30
t := 0∧a := −2∧x := 0
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Velocity Controller
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Approximate simulation relations for hybrid
systems.
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0 20 40 60

0

5

10

15
v

t

Velocity (specification)

0 20 40 60

0

5

10

15
v

t

Velocity (implementation)

0 20 40 60
0

5

10

v

t

Velocity differences

0 20 40 60
0
2
4
6

v

t

Temporal differences

0 20 40 60
0

5

10

v

t

Velocity differences
(retimed)

Quesel, Fränzle, Damm Crossing the Bridge between Similar Games 2nd December 2011 7 / 22



Retiming

Definition (ε-Retiming)

A left-total, surjective relation r ⊆ R+ × R+ is called ε-retiming iff

∀(t, t̃) ∈ r : |t − t̃| < ε ∧ ∀(t ′, t̃ ′) ∈ r : (t ≤ t ′ ↔ t̃ ≤ t̃ ′) .

Example

0 1 2 3 4 5 6 7 8 9
t

0 1 2 3 4 5 6 7 8 9
t̃
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Definition of ε-δ-simulation

Definition

For two streams σi : R+ × N→ Rp with i ∈ {1, 2}, given two
non-negative real numbers ε, δ, we say that σ1 is ε-δ-simulated by stream
σ2 (denoted by σ1 Eε,δ σ2) iff there is a ε-retiming r such that

∀(t, t̃) ∈ r : ||c(σ1)(t), c(σ2)(t̃)|| < δ

where for k ∈ {1, 2}: c(σk) is defined by c(σk)(t) := limq→∞ σk(t, q).
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Definition of ε-δ-simulation

Definition

A hybrid system A is ε-δ-simulated by another system B (denoted by
A Eε,δ B) iff for all input streams ιA and for all input streams ιB
ιA Eε,δ ιB implies that for all output streams ωA ∈ Ξ(ιA) of A, there is an
output stream ωB ∈ Ξ(ιB) of B such that ωA Eε,δ ωB holds.

Jan-David Quesel, Martin Fränzle, Werner Damm
Crossing the Bridge between Similar Games
FORMATS, LNCS 6919, 160-176. Springer, 2011.
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Logic L\ (Syntax)

Definition (Syntax of L\)
The basic formulas are defined by

φ ::= x ∈ I | f (x1, . . . , xn) ≤ 0 | ¬φ | φ1 ∧ φ2 | φ1UJ φ2

where I ⊆ R, J ⊆ R, f is a Lipschitz continuous function and the xi are
variables.

Example (L\ Formulas)

(x − y ≤ 5)U[0,10](x − y > 10)

2(x < 3→ 3x>7(x + y > 10))
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Logic L\ (Semantics)

Definition (Valuation)

We define the valuation of a variable x at time t on a run ξ as

ζξ(t, x) := lim
n→∞

ξ(t, n)|x ,

where y |x denotes the projection of the vector y to its component
associated with the variable name x .
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Logic L\ (Semantics)

Definition (Semantics of L\)
We define for a run ξ and some t ∈ R+ the semantics of a formula φ by:

ξ, t |= x ∈ I iff ζ(t, x) ∈ I
ξ, t |= f (x1, . . . , xn) ≤ 0 iff f (ζ(t, x1), . . . , ζ(t, xn)) ≤ 0

ξ, t |= ¬φ iff not ξ, t |= φ

ξ, t |= φ ∧ ψ iff ξ, t |= φ and ξ, t |= ψ

ξ, t |= φUJψ
iff ∃t ′ ∈ J : ξ,max{t ′ + t, 0} |= ψ and ∀t ≤ t ′′ < t ′ + t : ξ, t ′′ |= φ

Additionally we define for a set of runs Ξ:

Ξ, t |= φ iff for all runs ξ ∈ Ξ holds ξ, t |= φ

A hybrid system H satisfies a formula denoted by H |= φ iff ΞH , 0 |= φ.
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Preservation (Informal)

Example

Formula: x ∈ {0, 1, 2}
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Preservation (Informal)

Example

Formula: x ∈ {0, 1, 2}, δ = 1 ; x ∈ [−1, 3]
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Preservation (Informal)

Example

Formula: φU{1,2,3}ψ
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Preservation (Informal)

Example

Formula: φU{1,2,3}ψ, ε = 1 ; φ′U[0,4]ψ
′
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Preservation (Formal)

Theorem (Preservation of logical properties)

If hybrid systems A and B satisfy A Eε,δ B and B |= φ then A |= φ+δ+ε

where φ+δ+ε := reε,δ(φ) and reε,δ is defined by:

reε,δ(x ∈ I) := x ∈ I ′, where I ′ = {a | ∃b ∈ I : a ∈ [b − δ, b + δ]}.
reε,δ(f (x1, . . . , xn) ≤ 0) := f (x1, . . . , xn)− δ ·M ≤ 0 where M is the
Lipschitz constant for f .

reε,δ(¬φ) := ¬roε,δ(φ).

reε,δ(φ ∧ ψ) := reε,δ(φ) ∧ reε,δ(ψ).

reε,δ(φUJψ) := reε,δ(φ)UJ ′reε,δ(ψ), where
J ′ = {a | ∃b ∈ J : a ∈ [b − ε, b + ε]}.

where I ⊆ R and J ⊆ R holds.
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Preservation (Informal)

Example

Formula: ¬x ∈ [−1, 3]
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Preservation (Informal)

Example

Formula: ¬x ∈ [−1, 3], δ = 1 ; ¬x ∈ [0, 2]
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Preservation (Formal)

Theorem (Preservation of logical properties)

The transformation function roε,δ is given by:

roε,δ(x ∈ I) := x ∈ I ′, where I ′ = {a | ∀b ∈ [a− δ, a + δ] : b ∈ I}.
roε,δ(f (x1, . . . , xn) ≤ 0) := f (x1, . . . , xn) + δ ·M ≤ 0 where M is the
Lipschitz constant for f .

roε,δ(¬φ) := ¬reε,δ(φ).

roε,δ(φ ∧ ψ) := roε,δ(φ) ∧ roε,δ(ψ).

roε,δ(φUJψ) := roε,δ(φ)UJ ′roε,δ(ψ), where
J ′ = {a | ∀b ∈ [a− ε, a + ε] : b ∈ J }.

where I ⊆ R and J ⊆ R holds.
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Classical Relation

Observation

Simulations can be defined in terms of games.
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Observation

Controller synthesis is a game as well, i.e. the question whether the
controller can win against an malicious environment.
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Hybrid Game

Definition (Hybrid Game)

A hybrid game HG = (S ,Ec ,Uc , l) consists of

a hybrid automaton S = (U,X, L,E,F, Inv, Init),

a set of controllable transitions Ec ⊆ E ,

a set of controllable variables Uc ⊆ U,

and a location l ∈ L.

The environment wins, if it can force the game to enter the location l or if
the controller does not have any more moves. The controller wins, if he
can assert that the location l is avoided.
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Velocity Controller

ẋ = v
v̇ = −0.001x − 0.052v
−15 ≤ v ≤ 15

v̇ = 1.5
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Quesel, Fränzle, Damm Crossing the Bridge between Similar Games 2nd December 2011 18 / 22



Velocity Controller (Game)

C

C

C

Controlled

Uncontrolled

C Commited

Uc = {s} Invariant: 0 ≤ s ≤ 2
v̇ = −0.001x − 0.052v ; v̇ = s · (−0.001x − 0.052v)
v̇ = a ; v̇ = (2− s) · a
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Similarity and Games

Assumption

The systems that we compare are inputless, i.e. U = ∅.

Theorem

Given two hybrid systems A and B. If there is a winning strategy for the
controller in the game (A l B,Ec , {s}, bad) then A Eε,δ B holds.

Observation

If system B is deterministic and a retiming strategy is given, model
checking can be used to show that the winning strategy exists.
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Optimal Control

Optimal Control Strategy

For xA = (xA,1, . . . , xA,n) and xB = (xB,1, . . . , xB,n), the square of the
distance evolves as follows:

d(||xA, xB ||)2

dt
=

d(
√

((xA,1 − xB,1)2 + · · ·+ (xA,n − xB,n)2)
2
)

dt

=
d((xA,1 − xB,1)2 + · · ·+ (xA,n − xB,n)2)

dt

= Σn
i=1(2(xA,i − xB,i ) · (s

dxA,i
dt
− (2− s)

dxB,i
dt

))

Let smin be the s that minimizes this term. Now choose s in the following
way: If r < ε ∧ smin > 1 or r > −ε ∧ smin < 1 choose s = smin. Otherwise
choose s = 1. The resulting strategy, for controlling s can then be encoded
into a hybrid automaton and included into the original automaton.
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Summary

We . . .

. . . defined a notion of similarity for
hybrid systems.

. . . showed properties that are preserved
by this notion.

. . . established the classical relation
between simulations and games for this
notion.

. . . established some preliminary results
for solving these games.
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